
Hybrid.AI: A Learning Search Engine for Large-scale Structured
Data

Sean Soderman, Anusha Kola, Maksim Podkorytov, Michael Geyer, Michael Gubanov
Department of Computer Science
University of Texas at San Antonio

ABSTRACT

Variety of Big data [17, 40, 44, 47, 52] is a significant impediment
for anyone who wants to search inside a large-scale structured
dataset. For example, there are millions of tables available on the
Web, but the most relevant search result does not necessarily match
the keyword-query exactly due to a variety of ways to represent
the same information.

Here we describeHybrid.AI, a learning search engine for large-
scale structured data that uses automatically generated machine
learning classifiers and Unified Famous Objects (UFOs) [33] to
return themost relevant search results from a large-scaleWeb tables
corpora. We evaluate it over this corpora, collecting 99 queries and
their results from users, and observe significant relevance gain.
ACM Reference Format:

Sean Soderman, Anusha Kola, Maksim Podkorytov, Michael Geyer, Michael
Gubanov. 2018. Hybrid.AI: A Learning Search Engine for Large-scale Struc-
tured Data. In WWW ’18 Companion: The 2018 Web Conference Compan-
ion, April 23–27, 2018, Lyon, France. ACM, New York, NY, USA, 8 pages.
https://doi.org/10.1145/3184558.3191600

1 INTRODUCTION

With the advent of large scale data management systems, data sci-
entists and analysts have more information at their disposal than
ever before. This influx of data makes retrieval of needed informa-
tion challenging [6, 39, 47, 56]. Consider a data scientist working
with structured data who has a recently mined large scale Web
table dataset. If s/he wanted to enrich her information concerning
weather in her region, s/he might be inclined to use keyword search
in order to find the best records of interest in the dataset. How-
ever, a standard keyword-search over structured data, by nature,
may provide inaccurate or incomplete search results, even when
using sophisticated ranking functions, due to mismatches of rele-
vant information to the query or the presence of relevant terms in
irrelevant data rows [5]. Also, most structured data search engines
return entire tables instead of the most relevant rows fused from
many tables.

Although the properties of human language and text are the root
cause of these issues, it is possible to decrease them by analyzing
the semantic properties of data. This is what we do in Hybrid.AI,
an intelligent search engine that automatically generates machine
learning classifiers to identify similar data tuples to return more
relevant search results compared to standard keyword search.

This paper is published under the Creative Commons Attribution 4.0 International
(CC BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporate Web sites with the appropriate attribution.
WWW ’18 Companion, April 23–27, 2018, Lyon, France
© 2018 IW3C2 (International World Wide Web Conference Committee), published
under Creative Commons CC BY 4.0 License.
ACM ISBN 978-1-4503-5640-4/18/04.
https://doi.org/10.1145/3184558.3191600

In order to generate the aforementioned classifiers, we make
use of user-specified keywords to search for rows from tables that
contain these keywords as attributes. These keywords are meant
to be correlated with a certain object, for example, if we wanted to
create a classifier for “jobs”, our systemwould generate training data
using keywords such as “salary”, “date”, and “position”. Once this
is done, we automatically train the classifier, then use it to cluster
table rows that are likely to be job-oriented. Finally, we extract
core attributes [33] from this set of classified rows. Informally core
attributes are the most important attributes of an object (e.g. wings
for a bird) a critical component of UFOs, a data structure used
for fusing similar structured data objects that are represented in
different ways [27, 41]. We use core attributes as soft constraints,
improving the rank of results that are related to a specific object of
interest. With this method, we get more relevant results, compared
to the standard retrieval and ranking schemes for keyword search
over structured data.

Our contributions in this paper are the following:

• Machine-learning augmented Information Retrieval

Scheme for Large-scale Structured Data: We propose a
new fusion-based information retrieval scheme for structured
data that leverages machine learning classifiers and Unified
Famous Objects (UFO) [33]. We extensively evaluate it over
99 queries, using purely keyword-based retrieval as a baseline,
on a large scale structured data set having millions of Web
tables and observe significant retrieval relevance gain.

• A Learning Search Engine for Large-scale Structured

Data -Hybrid.AI, marrying keyword-searchwith generated
machine learning classifiers.

We are not the first who made an attempt to search Web tables. For
example, [10] describes techniques borrowed from Web search to
index and search Web tables. Another recent project focused on
Web table search was [54], however, their domain was question
answering instead of generalized search over structured data.

The rest of the paper is organized as follows. Section 2 discusses
related work. Section 3 describes the system architecture and classi-
fier generation. Section 4 describes a search scenario & classification
scenario that illustrate our system. UFOs: Unified Famous Objects,
are a structure used to abstract away differences in data represen-
tation [27, 33, 41]. See Section 5 for a more in-depth discussion
on UFOs. To rank tuples from a large-scale corpus of Web tables
from [28], we designed and evaluated several ranking functions
optimized for large-scale structured data, making use of the best
one for our system. Refer to Section 6 for more details on ranking.
To evaluate our ranking, we compare it to an enhanced version
of a standard ranking function popular in structured data search
[5, 10, 13, 54] in Section 7. Future work is described in Section ??.
We conclude in Section 8.

https://doi.org/10.1145/3184558.3191600
https://doi.org/10.1145/3184558.3191600

2 RELATEDWORK

We studied a variety of relevant systems in Web-search, large-
scale data management, and information extraction/retrieval. [10]
describes different search methods for Web tables. A key technique
the authors use for improved search results is through using the
AcsDB, a database of statistics concerning the table attributes in
the corpus. It is used to compute a coherency score that uses PMI,
Pointwise Mutual Information, which rewards items more likely to
be paired together. The major difference between their system and
our own is that it is ranking entire tables, whereas ours ranks each
row (potentially originating from different tables) individually. This
allows us to get the most relevant tuples from the entire corpus
and compose it into a concise result set. [54] describe a question
answering (Q&A) system for Web tables. This system retrieves
individual cells from tables to answer a limited class of questions.
For example, for the question - what language do people in France
speak, it identifies the column main language in the table countries
as the most relevant and lists languages from it. The authors also
evaluate the effectiveness of their system using precision and recall.

We evaluate our system using nDCG [38] rather than precision
and recall, because our system is a search-engine, not a Q&A system.
nDCG takes not only precision and recall, but also ordering of the
results into account, which is very important for a search-engine.

DBxplorer [5] is a keyword-search engine for relational databases
that supports conjunctive keyword queries. It can also join tables,
creating rows that contain all keywords from a search query, as well
as attributes from different tables in this join result. This contrasts
with our approach, which uses a more flexible disjunctive keyword
search, fuses, and ranks tuples by relevance from millions of Web
tables having different schemas. Disjunctive keyword-search allows
retrieval of possibly relevant rows, despite not containing all search
terms used. DBxplorer ranks rows by using the number of joins
involved in the generation of a row rather than using weights of
terms from the query and the tuples or more advanced techniques,
outlined in Section 6. The authors’ reasoning behind using the
number of joins for ranking is that tables generated from several
joins are harder to comprehend ([5], Section 6.2). This is somewhat
similar to using keyword-proximity to help with ranking because
tables must be joined until all keywords are present, however it
does not consider stronger signals for relevance in search results.

[13] developed a ranking system for database queries. Rather
than returning all tuples that satisfy a query, it calculates the top-k
relevant tuples. To calculate relevance, it uses a global score that
depends on user preferences, as well as a conditional score that
considers the correlations between specified and unspecified terms
in a query. In contrast, our ranking functions are dependent on the
terms in the query and the relevance score of a tuple from the Web
table.

In [16], a framework for defining the relatedness of tables based
on whether or not they can be joined, as well as algorithms for
detecting related tables that can be unioned or joined, was created.
This was done to enable the retrieval of tables related to an input
table, using this input table as a query rather than keywords. The
authors defined two definitions for relatedness: entity complement
and schema complement.

The former states that two tables T1 and T2, derived from a pos-
sibly nonexistent table T , must be created with selections over the
same set of attributes inT , using different predicates. In addition to
this, the combination of the selected tuples inT1 andT2 must consist
of everything in T . Lastly, any projections from these selections
must be on the same sets of attributes, as well as include the subject
columns, which define the entity being described in the table.

An example of this would be a table about car models. If tableT1
had the attributes “model”, “make”, and “year”, and the other table
T2 had attributes “name”, “warranty” and “horsepower”, it would
be feasible that both of these tables were projected from a table
containing all of these attributes, with some attribute expressing
“name” or “model” since they are synonymous. To ensure that this
measure of table relatedness makes sense, the authors also ensured
the coherency of the virtual table. In order to do this, they ensured
that the entities within T1 and T2 were of the same type, such as
“name” and “author” both being identifiers. An example of an inco-
herent table would be one storing information about baseball cards
and theater showtimes. Such a table would have a low coherency
score. However, a table storing information about the 2016 and 2017
NBA championships would be deemed sensible.

Concerning schema complement, the two tables T1 and T2 would
have to be created using queriesQ1 andQ2 that have a similar struc-
ture. These queries must be in the form of a projection, additionally,
they must select attributes so that T1 and T2 have at least one at-
tribute not in common with one another, as well as at least one in
common. Finally, the union of these two sets of project attributes
must consist of the attributes in the virtual table T .

We create tables of related content using classifiers, instead of
inferring whether tables could be coherently joined or unioned. Due
to this, we do not employ such an artificial relatedness measure. We
do not focus on ranking related tables, since we rank single tuples
at a time in order to form a concise result set from thousands of
tables. Also, because of our focus on single tuples, we have no use
for inferring whether two results could be formed from similar SQL
queries. Their objective of enhancing a user’s tables is also different
from our vision of unified retrieval of the most relevant tuples from
the entire corpus. [12] developed a Web table service built on top of
data derived fromMicrosoft’s BingWeb search engine. Their search
service uses machine learning to identify the entity column, which
contains entities described by the values of other attributes in the
table. This is done for queries such as “population of San Antonio”
and “population of Bexar county”, since both queries may match
the same row even though the table may only describe the popu-
lation of one of these entities. The authors also use static features
such as number of rows and PageRank to aid in ranking tables, in
addition to a feature based on the cell placement and column/row
frequency of certain keyword matches. It is difficult to determine
how effective their web table ranking is, since they do not provide
an evaluation on it. We provide a thorough evaluation of our rank-
ing in Section 7 using nDCG, a widely-used metric for assessing
search result relevance [38]. Our method uses machine learning to
identify rows belonging to objects of the same class, rather than
identifying entities. We also rank using a combination of keyword
intersection and core attribute matching, not taking into account
the position of terms other than for our keyword proximity calcula-
tion. Finally, we return a combination of rows from different tables

rather than an entire table at a time. This consolidated search result,
including rows from many relevant tables, provides more relevant
search results, compared to returning just one of a few entire rel-
evant tables that may ormay not have all rows relevant to the query.

2.1 Unified Famous Object (UFO): Definitions &

Applications

[27, 32, 33, 41] developed a system that provides a unified, object-
oriented way to query data from different data sources. Using UFOs
hides structural differences between data sources and offers a query-
able abstraction that is oblivious to this difference in metadata from
different sources. It can also use the UFOs it has already constructed
to identify new, familiar objects [3, 7, 14, 19, 20, 29–31, 34, 35, 46, 48].
This is different from our system since it is a system for data in-
tegration rather than a search engine. [33] describe and evaluate
algorithms for UFO [27] creation. The authors illustrate the pre-
UFO technique for matching attributes, such as BuyItNowPrice to
Buy-It-Now-Price, as well as more dissimilar ones such as Con-
vertedCurrentPrice to CurrentPrice. This was done using exact
matching, tokenized matching, and an NLP-enhanced version of the
tokenized matching that uses part-of-speech tagging. The authors
define core properties, or core attributes, which are the attributes
that must be present for a UFO to exist. See [33] for more details.
Our system focuses on generating these sets of core properties using
term matching to count their occurrences [41]. We use them to
assert the relevance of rows within the dataset, rather than build-
ing UFOs for identifying similar objects. [32] applied UFOs [27] to
identify and fuse biomedical data, and used it for pre-diagnosing an
early-onset Alzheimer’s Disease. The authors demonstrated how
UFOs simplified comparing a patient’s DNA sequence with a refer-
ence sequence, resulting in a pre-diagnosis. Our system uses UFO’s
core attributes to boost search result rankings. Our search system
also uses unstructured keyword queries rather than XQuery, trans-
lating them into SQL. Another key difference is how we return
rows from many tables in a single, consolidated result.

3 ARCHITECTURE

Figure 1 displays an overview of our system’s components. A brief
description of each one follows.

3.1 Dataset

We use a large-scale Web tables dataset of ≈ 86 million Web table
tuples (Approximately 55 million non-spam tuples) from [28, 55].
These instances came from Web tables pulled from sources such as
online forums, social media sites, product offers, and others. They
consist of data items or attributes from these web tables. We link
each tuple to the web table it came from by storing an ID for that
table in the tuple. We used [42, 53] to store said dataset.

3.2 Ingestion

Similar to E-mail or Web pages, tables extracted from the Web
also have spam (examples include empty tables, HTML formatting,
junk advertisements, etc) and require cleaning before ingestion. We
trained our own J48 web table spam classifier [43, 55] to filter out
tables with these characteristics. Using 10-fold cross-validation, a

Figure 1: Hybrid.AI Architecture

technique for estimating model performance [43] (in this case, the
performance of our classifier), we observed 72.6% precision and
70.6% recall.

3.3 Generating training data with SQL

After cleaning the data, once they are ingested into the parallel col-
umn store, we retrieve groups of similar objects using SQL queries.
These queries are constructed from a set of keywords provided by
the user (see Figure 4), such as “album”, “title”, and “price”, which
in this case may have been chosen to generate training data for a
classifier to identify song oriented data.

3.4 Generating Scalable Machine Learning

Classifiers

We automatically generate large-scale machine learning classifiers
using the training data generated with the queries in the previous
step. For example, the cluster of tables sharing attributes “trailer”,
“length”, and “director” concerns movies, and after being trained
on the data in this cluster, the classifier can identify more rows
in the corpus associated with this movie data. Note that it is not
necessarily the case that data positively labeled by this classifier
will have the same set of attributes as the generated training data.
We use 10-fold cross validation [43] to evaluate precision/recall of
generated classifiers, observing an average of 92.5% precision and
92.1% recall across nine classes of objects (e.g. songs, job postings,
blog postings, real estate postings, etc) [19, 21–26, 45, 51].

3.5 Metadata Classifier

In order to extend our solution to be fully automated it is required
that we identify those rows which contain attribute labels. That is,
we must identify the descriptive metadata [18] of a table. A set of

900,000 records was processed to create a vector space with 6,900
features. From these rows, the training data was gathered using a
series of rules. For example, one such rule was that from within a
single html table, at most one row could be considered metadata.
Another rule was that rows with low word count were more likely
to be metadata. This training data was then manually checked and
pruned for accuracy resulting in 6,500 negative samples and 540
positive samples. Using this training data we produced a Support
Vector Machine classifier with a linear kernel [15] and a one-vs-one
decision function [37] to identify rows containing metadata. This
model was selected to help compensate for the small training set
compared to the size of our vector space. After performing 10-fold
cross validation [43] to evaluate the precision and recall we observed
an average of 80% precision and 64% recall.

3.6 Search

We designed amachine-learning augmented keyword search scheme
using classifiers trained in the previous step to return the most
relevant search results. Our ranking function uses the classifiers
described in the previous paragraph, intersection, proximity, and
UFOs [33] to rank search results. Refer to Sections 6 and 7 for more
details on the ranking algorithms and their extensive evaluation.

3.7 Interface

An interactive user interface is used for executing search queries
on our Web tables corpus. It also functions as a tool for training
machine learning classifiers, generating & executing SQL queries
for fetching training data (see Figure 4).

4 USAGE SCENARIOS

In Figures 2 and 3 are screenshots of the web frontend to our search
engine corresponding to our two search scenarios. In the first sce-
nario, the user searches data with the default mode, that is, an
intersection-based, keyword-proximity augmented keyword search
over Web table tuples. The second scenario enhances this method
using UFO core attributes, which were collected from classified
subsets of our large-scale dataset. This is done whenever a user
enters a tag, like “:songs”. Rather than filtering all data that does
not topically match this tag, we use the attributes of web tables
associated with this tag to increase the rank of results sharing those
attributes. See Section 6 for more details regarding attribute-driven
rank calculation.

After describing how our system carries out search, we illustrate
how users can specify keywords, such as “make”, “model”, and
“year”, to fetch training data with these attributes (see Figure 4). In
order to use our improved ranking function in the search scenarios,
we need to first train then use these classifiers to identify all rows
that fall under a certain category, such as songs.

4.1 Search Scenarios

Here the user wishes to find articles on scientific discoveries. Using
the standard popular ranking functions for structured data gives us
vague search results (Figure 2). The main problemwith these results
is that they contain little useful information, and might actually be
pointers to some articles.

With our UFO core-attribute augmented querying scheme in
Figure 3, the user specifies a class of objects of interest in the
query, here articles, which makes the system perform an attribute-
matching algorithm after the initial keyword-based retrieval. This
algorithm rewards rows that came from tables that share attributes
with article-oriented data (see Section 6 for more details).

Figure 2: Search results from our large scale web-table cor-

pus. Without a tag, we are faced with data that are most

likely URLs or anchor text (rows 1 through 3) pertaining to

scientific discovery, rather than titles of articles under this

topic.

The results in Figure 3 are a major improvement over those
in Figure 2. It is important to note that we do not only see an
improvement in ranking (the results are actual scientific literature
as opposed to what seem to be website elements), we also observe
the ability of our system to return results with different attributes
for the same query. This difference in attributes is apparent from
the varied content of the data presented in the results in Figure 3.

4.2 Classifier Training Scenario

Here, we describe how to automatically generate a machine learn-
ing classifier, identifying rows of a certain type among millions in
the corpus of Web tables. The user enters a few descriptive key-
words [28] in the bottom left frame in Figure 4, for example “make”,
“model”, “year”. We use these keywords to fetch rows corresponding
to the web tables that contain them as attributes. In addition to
the attribute names, the user can enter lower and upper bounds
on the row-length and column-length. Row length is the number
of characters in a tuple of a Web table. The column-length is de-
fined as row-length, but with respect to a column of a Web table.
Such parameters are needed since we store all of the Web tables
in our corpus within a single database table, and the number of
attributes as well as rows varies between tables. The user can also
pick checkboxes corresponding to each column to indicate which
ones the filters apply to. Our interface allows the user to select up
to 7 columns in this way. Refer to [28] for more details on classifier
generation.

Once the keywords are in and the filters are selected, the user
clicks Generate Training Data to retrieve training data having these
attributes. A sample is shown to the user in the right frame of
Figure 4. Finally, the user can select the classifier type (e.g. J48,
Naive Bayes) by toggling a radio-button. After that, the user clicks

Figure 3: Search results from our large scale web-table corpus. Using the tag “articles” improves the results drastically. We can

see that the top two rows directly pertain to articles about scientific discoveries. The third is a book that debunks some scien-

tific discoveries made by historically important scientists. Notice how each of these rows are heterogeneous in their structure,

demonstrating the advantage of fetching individual rows as opposed to entire tables.

the Generate Model button, which triggers the process of training
the machine-learning classifiers using these generated training data.
The training set contains positively labeled training data, created
as described above, and negatively labeled training data, which was
made by selecting rows from the corpus without positive labels.
We use 50% negative rows and 50% positive to create a balanced
training set.

After the model is trained, it is run to classify the Web table rows
and output a sample to the user in the right frame of Figure 4. If the
user is satisfied with the model performance, s/he clicks the Add to
schema button and the model is added to the list of objects in the
left frame. After that, the user can click it in the left frame, and the
classified data rows will be displayed in the right frame.

5 UNIFIED FAMOUS OBJECT - SONGS

UFO is an abstraction introduced in [27] to assist in data fusion
of the same object from different data sources. An example of a
UFO stored in JSON is illustrated in Listing 1. In this UFO for Songs
the “name” attribute has a collection of its different representations
accumulated from different data sources, including those in different
languages.

With regards to our usage of core attributes, Listing 1 demon-
strates a sample of the kinds of attributes we collect and use in the
algorithm described in Section 6. Attributes in different languages
are still useful for gathering data that is associated with a certain
object (here, “songs”). Refer to [27, 32, 33, 41] on UFO definition
and more details on automatic UFO construction and data fusion
using UFOs.

Listing 1: A Fragment of UFO Songs in JSON

{"Songs": {

"name": ["name", "nom", "nome",

"タイトル", "naam", "tÃtulo", "title",

"lyrics", "nombre", "song"],

"price": ["price", "preis", "prix",

"prezzo", "prijs", "precio", "preço",

"perhour"],

"time": ["time", "length", "länge",

"lengte", "durée", "durata",

"duración", "duração"],

"artist": ["artist", "artista", "artiest",

"artiste", "interpret"],

"album": ["album", "Ã¡lbum", "movie"],

"download": ["download", "search"],

"description": ["description",

"descripción"],

"music": ["music", "type"],

"date": ["date", "datum"],

"show": ["show"],

"type": ["type", "all styles"]}

}

6 RANKING OF SEARCH RESULTS

Here, we formally describe the two ranking methods we evaluate
in Section 7 below. With regards to our baseline method, we used a
combination of term intersection, which we found to be more effec-
tive than a term-frequency based approach, as well as augmented
it with keyword proximity. Thus, the effectiveness of this approach

Figure 4: Automatic generation and training of a large-scale machine learning ensemble recognizing an object of interest,

given several descriptive attributes from the user (for example - make, model, year). The user can enter the keywords, click

the Generate Training Data button that will use the keywords to generate training data. Then, clicking the Generate Model
button will trigger the process of automatically training the classifier with the generated training data.

makes the challenge of improving it more difficult.

6.1 Baseline Ranking

We use a derivative of an intersection-based keyword ranking
scheme with proximity as a baseline to compare with. It is one
of the most widely-adapted popular search schemes for structured
data [5], on the Web [9], and in document search [36].
ti − idi (Term Intersection - Inverse Document Intersection): Our rank-
ing function for large-scale structured
datasets accounts for high redundancy of search keywords in arbi-
trary database rows, a phenomena we observed for such datasets.
This could happen even when the row in question is not spam [55].
An example of this would be a row containing a large amount of
information concerning nobility, the word “lady” could appear mul-
tiple times. Such a row would expose the weakness of traditional
t f − id f ranking in the context of databases when a user issues a
query like “lady gaga songs”. In this case, the irrelevant informa-
tion about nobility would be ranked much higher than information
about Lady Gaga’s music, simply because the word “lady” appeared
many times in the row. Thus, we defined the following ranking
function to account for this problem, in addition to incorporating
all standard ranking features of keyword search:

Rint (ρ,C,Q) =
∑
t ∈Q

ti(t , ρ) × idi(C, t) (1)

Where ρ is the row we are ranking, C is our corpus and Q is the
user’s query. t is a single term ∈ Q . ti is defined as follows:

ti(t , ρ) =
{

1 if t ∈ ρ
0 otherwise

Notice that this function checks for the mere existence of a term
within the row, so it is boolean. Hence, in Equation 1, we are effec-
tively selecting the idi weights we wish to sum. These weights are
defined by the following measure:

idi(C, t) = ln ©­« |C |∑ |C |
i=0 |Ci ∩ {t}|

ª®¬ (2)

Intuitively, the numerator is the number of rows within the corpus.
The denominator is the number of rows term t appears in within
the corpus. This is scaled logarithmically so the closer we are to the
row-cardinality of the corpus on the bottom, the closer our weight
gets to 0. See [49] for justification & formal details regarding IDF.

As a final measure in this base ranking scheme, we use keyword
proximity [8] to discount the rank of rows containing key terms
that occur further apart. We take the total distance (starting at 1
when all words are adjacent) between the closest occurring keyword
terms in a row and divide the ti − idi score by the natural logarithm
of this value. This is since we do not wish to penalize the score of
possibly relevant rows too harshly. We discount the ti − idi score
by the natural logarithm of 100 if only one keyword is present in
the row, as such a result is highly unlikely to be relevant. We came

up with this constant experimentally, in order to prevent any rows
with only one matched term from appearing if rows with more
matched terms exist in the corpus.

6.2 Using trained classifiers and Unified

Famous Objects to get more relevant search

results

In this scheme, we first extract UFO core attributes [33, 41] from
each Web tables’ subset labeled by our trained classifier to belong
to a certain class (e.g. songs), then use them to retrieve the most
relevant search results from the entire corpus. We extract this set
of core attributes with a query that fetches attribute rows that
belong to the classified data. Each row in our corpus contains a
filename, identifying the Web table it came from. We join the set
of classified data rows with all metadata rows from the corpus
on their filename. We then iterate through this table of attributes,
counting the occurrences of all attributes and inserting the attribute
frequencies into our table of core attributes. This step is done offline
per UFO to reduce overhead during query-time. See [41] for more
detail on UFO construction and core attributes. During online query
processing, we load the pre-computed set of core attributes into a
Java HashMap. We then load a result set of the rows containing at
least one term from the query into memory, ranking them according
to Equation 1. Finally, we increase the ranking of each tuple in
the result set by matching each of its attributes to core attributes,
increasing their rank by the natural logarithm of the sum of all
matched core attribute frequencies. We perform this logarithmic
scaling because of the high frequency of many of the attributes in
our dataset. Doing this approximatesmatching an extra keyword for
especially popular attributes, thus making it easier to see how core
attributes affect the ranking of rows. An even better ranking could
be achieved by using Unified Famous Objects (UFO) not only for
core attributes, but also for attribute matching [33]. This will enable
us to go beyond simple keyword matching, matching words that
are either synonymous or closely related to one another to improve
a row’s rank. See [33] for details on UFOs and object recognition
evaluation for UFOs.

7 EVALUATION

It is important to assess the effectiveness of using our Classifiers+UFOs
ranking scheme for structured data. To gauge relevance gain over
99 different queries we collected from users, we compare it with
the baseline ranking described above in the "Baseline Ranking"
paragraph in Section 6.

To evaluate relevance gain provided by our ranking function,
we asked 28 students taking a database class to come up with a
few queries they might be interested in executing over our Web
tables dataset. After accumulating 99 different queries, we asked
two independent evaluators to assign relevance labels from 1-Bad
to 5-Perfect to all (query, search result) pairs generated by our
two ranking schemes for these queries. We took 15 top results for
each query. We dropped a label whenever the evaluators disagreed.
Based on these labels and ranking by our schemes, we took the
top 15 results from each query to compute their nDCG15, which is
an industrial standard measure to evaluate search relevance [4]. It
stands for “Normalized Discounted Cumulative Gain” and reflects

Figure 5: Search relevance evaluation of our system over 99

user queries. Each point is the delta in nDCG15 between our

AI-augmented and baseline ranking functions.

relevance of search results to the specific query. It computes a value
based on user-assigned relevance labels to rows in a result set,
discounting their contribution to the overall DCG score the lower
their position is in the result set. The following equation formalizes
this intuition:

DCGn (S) =
n∑
i=0

Si .label

loд2(i + 1)
(3)

Where S is the set of ranked rows and label is the value of the user-
assigned relevance label for the row, and n is the number of results
from the result set we consider from the query. To compute the
normalized DCG, we must first compute iDCG, the DCG value of a
search engine that is able to rank the results perfectly. By sorting
relevant S by label (in descending order), then computing DCG, we
get iDCG. Dividing the DCG by iDCG then produces our nDCG
value for a particular query. nDCG thusly rewards highly relevant
results when their position is more appropriate (higher). Refer to
[38] for more formal details on nDCG.

In Figure 5, each point is the delta between the nDCG15 value of
the same query run using two different query processing schemes.
The first is with UFO core attributes and classifiers, the second is
the baseline ranking scheme. Many queries get better as we can
see from the graph, at the same time there are queries that got
worse. For example, the largest relevance decrease we observed
was for the query “fifth element”, where several of the most relevant
results did not have proper metadata attributes in our dataset. This,
combined with terms from iTunes being present in the set of film
core attributes, caused the query to fetch more song data for this
query instead of film data. More queries improve overall, which is
reflected by an average 1.5% increase in nDCG over all 99 queries,
which is considered significant in web search [4].

8 CONCLUSION

We described Hybrid.AI - a learning search engine marrying ma-
chine learning with keyword-search. We justified that our Machine
Learning+UFO augmented keyword-search returns more relevant
search results than a standard ranking function for keyword search
over structured data [1, 2, 11, 50]. We gauged the relevance gain
of our algorithms using nDCG, a de-facto standard relevance mea-
sure, employed by major Web-search engines [4], and observed
significant gain on 99 user queries over a large scale Web table
corpus.

9 ACKNOWLEDGMENTS

We would like to thank anonymous reviewers for their feedback
on earlier drafts of this paper. This material is based upon work
supported by the National Science Foundation (NSF) under Grant
No. 1701081.

REFERENCES

[1] [n. d.]. Hybrid.AI: An AI-Augmented Search Engine for Large-scale Structured
Data. In MIT Annual Database Research Conference.

[2] [n. d.]. Hybrid.Poly: An Interactive Large-scale In-memory Analytical Polystore.
In MIT Annual Database Research Conference.

[3] Ziawasch Abedjan, John Morcos, Michael Gubanov, Ihab F. Ilyas, Michael Stone-
braker, Paolo Papotti, and Mourad Ouzzani. 2015. Dataxformer: Leveraging the
Web for Semantic Transformations. In CIDR.

[4] Eugene Agichtein, Eric Brill, and Susan Dumais. 2006. Improving Web Search
Ranking by Incorporating User Behavior Information. In SIGIR.

[5] Sanjay Agrawal, Surajit Chaudhuri, and Gautam Das. 2002. DBXplorer: A system
for keyword-based search over relational databases. In ICDE.

[6] Albin Ahmeti, Javier D. Fernández, Axel Polleres, and Vadim Savenkov. 2017.
Updating Wikipedia via DBpedia Mappings and SPARQL. In ESWC.

[7] Bogdan Alexe, Michael Gubanov, Mauricio A. Hernández, C. T. Howard Ho,
Jen-Wei Huang, Yannis Katsis, Lucian Popa, Barna Saha, and Ioana Stanoi. 2008.
Simplifying Information Integration: Object-Based Flow-of-Mappings Framework
for Integration. In BIRTE.

[8] Ricardo Baeza-Yates and Walter Cunto. 1999. The ADT proximity and text
proximity problems. In SPIRS. IEEE, 24–30.

[9] Sergey Brin and Lawrence Page. 1998. TheAnatomy of a Large-scale Hypertextual
Web Search Engine. In WWW.

[10] Michael J Cafarella, Alon Halevy, Daisy Zhe Wang, Eugene Wu, and Yang Zhang.
2008. Webtables: exploring the power of tables on the web. VLDB (2008).

[11] Michael A. Casey, Christophe Rhodes, and Malcolm Slaney. 2008. Analysis of
Minimum Distances in High-Dimensional Musical Spaces. IEEE TASLP 16 (2008),
1015–1028.

[12] Kaushik Chakrabarti, Surajit Chaudhuri, Zhimin Chen, Kris Ganjam, Yeye He,
and WA Redmond. 2016. Data services leveraging Bing’s data assets. IEEE Data
Eng. Bull. (2016), 15–28.

[13] Surajit Chaudhuri, Gautam Das, Vagelis Hristidis, and Gerhard Weikum. 2004.
Probabilistic ranking of database query results. In VLDB. 888–899.

[14] Surya Cheemalapati, Michael Gubanov, Michael Del Vale, and Anna Pyayt. 2013.
A real-time classification algorithm for emotion detection using portable EEG. In
IRI.

[15] Corinna Cortes and Vladimir Vapnik. 1995. Support-vector networks. Machine
learning 20, 3 (1995), 273–297.

[16] Anish Das Sarma, Lujun Fang, Nitin Gupta, Alon Halevy, Hongrae Lee, Fei Wu,
Reynold Xin, and Cong Yu. 2012. Finding related tables. In SIGMOD.

[17] Hady ElSahar, Elena Demidova, Simon Gottschalk, Christophe Gravier, and
Frédérique Laforest. 2018. Unsupervised Open Relation Extraction. CoRR
abs/1801.07174 (2018).

[18] Jane Greenberg. 2005. Understandingmetadata andmetadata schemes. Cataloging
& classification quarterly 40, 3-4 (2005), 17–36.

[19] Michael Gubanov. 2017. Hybrid: A Large-scale In-memory Image Analytics
System. In CIDR.

[20] Michael Gubanov. 2017. PolyFuse: A Large-scale Hybrid Data Fusion System. In
ICDE DESWeb.

[21] Michael Gubanov and Philip A. Bernstein. 2006. Structural text search and
comparison using automatically extracted schema.. In WebDB.

[22] Michael Gubanov, Philip A. Bernstein, and Alexander Moshchuk. 2008. Model
Management Engine for Data Integration with Reverse-Engineering Support. In
ICDE.

[23] Michael Gubanov, Chris Jermaine, Zekai Gao, and Shangyu Luo. 2016. Hybrid: A
Large-scale Linear-relational Database Management System. In MIT Annual DB
Conference.

[24] Michael Gubanov, Shangyu Luo, Zekai Gao, Luis Perez, and Christopher Jermaine.
2017. Scalable Linear Algebra on a Relational Database System. In ICDE.

[25] Michael Gubanov, Shangyu Luo, Zekai Gao, Luis Perez, and Christopher Jermaine.
2018. Scalable Linear Algebra on a Relational Database System. In to apear in
TKDE.

[26] Michael Gubanov, Shangyu Luo, Zekai Gao, Luis Perez, and Christopher Jermaine.
2018. Scalable Linear Algebra on a Relational Database System. In to appear in
ACM SIGMOD Record.

[27] Michael Gubanov, Lucian Popa, Howard Ho, Hamid Pirahesh, Jeng-Yih Chang,
and Shr-Chang Chen. 2009. IBMUFO repository: Object-oriented data integration.
VLDB (2009).

[28] Michael Gubanov, Manju Priya, and Maksim Podkorytov. 2017. CognitiveDB: An
Intelligent Navigator for Large-scale Dark Structured Data. In WWW.

[29] M. Gubanov and A. Pyayt. 2013. ReadFast: High-relevance Search-engine for Big
Text. In ACM CIKM.

[30] Michael Gubanov and Anna Pyayt. 2016. Type-aware Web search. In EDBT.
[31] Michael Gubanov, Anna Pyayt, and Linda Shapiro. 2011. ReadFast: Browsing

large documents through UFO. In IRI.
[32] Michael Gubanov and Linda Shapiro. 2012. Using Unified Famous Objects (UFO)

to Automate Alzheimer’s Disease Diagnostics. In BIBM.
[33] Michael Gubanov, Linda Shapiro, and Anna Pyayt. 2011. Learning Unified Famous

Objects (UFO) to Bootstrap Information Integration. In IRI.
[34] Michael Gubanov and Michael Stonebraker. 2014. Large-scale Semantic Profile

Extraction. In EDBT.
[35] Michael Gubanov, Michael Stonebraker, and Daniel Bruckner. 2014. Text and

Structured Data Fusion in Data Tamer at Scale. In ICDE.
[36] Lin Guo, Feng Shao, Chavdar Botev, and Jayavel Shanmugasundaram. 2003.

XRANK: Ranked keyword search over XML documents. In SIGMOD. ACM.
[37] Chih-Wei Hsu and Chih-Jen Lin. 2002. A comparison of methods for multiclass

support vector machines. TNN 13, 2 (2002), 415–425.
[38] Kalervo Järvelin and Jaana Kekäläinen. 2000. IR evaluation methods for retrieving

highly relevant documents. In SIGIR. ACM.
[39] Emilia Kacprzak, Laura M. Koesten, Luis Daniel Ibáñez, Elena Simperl, and Jeni

Tennison. 2017. A Query Log Analysis of Dataset Search. In ICWE.
[40] Laura M. Koesten, Emilia Kacprzak, Jenifer Fay Alys Tennison, and Elena Simperl.

2017. The Trials and Tribulations of Working with Structured Data: a Study on
Information Seeking Behaviour. In CHI.

[41] Anusha Kola, Harshal More, Sean Soderman, and Michael Gubanov. 2017. Gen-
erating Unified Famous Objects (UFOs) from the classified object tables. In IEEE
Big Data.

[42] Marcel Kornacker and Alexander Behm et al. 2015. Impala: A Modern, Open-
Source SQL Engine for Hadoop. In CIDR.

[43] Thomas M. Mitchell. 1997. Machine Learning. McGraw-Hill, Inc., New York, NY,
USA.

[44] Tope Omitola, Sebastián A. Ríos, and John G. Breslin. 2015. Social Semantic Web
Mining. Morgan & Claypool Publishers.

[45] Steven Ortiz, Caner Enbatan, Maksim Podkorytov, Dylan Soderman, and Michael
Gubanov. 2017. Hybrid.JSON: High-velocity Parallel In-Memory Polystore JSON
Ingest. In IEEE Bigdata.

[46] Manju Priya, Maxim Podkorytov, andMichael Gubanov. 2017. iLight: A Flashlight
for Large-scale Dark Structured Data. In MIT Annual DB Conference.

[47] Freddy Priyatna, Edna Ruckhaus, Nandana Mihindukulasooriya, Óscar Corcho,
and Nelson Saturno. 2017. MappingPedia: A Collaborative Environment for
R2RML Mappings. In ESWC.

[48] Anna Pyayt and Michael Gubanov. 2013. BigDB: Automatic Machine Learning
Optimizer. CoRR abs/1301.1575 (2013).

[49] Stephen Robertson. 2004. Understanding inverse document frequency: on theo-
retical arguments for IDF. Journal of documentation 60, 5 (2004), 503–520.

[50] G. Salton, A. Wong, and C. S. Yang. 1975. A Vector Space Model for Automatic
Indexing. CACM 18, 11 (Nov. 1975), 613–620.

[51] Mark Simmons, Daniel Armstrong, Dylan Soderman, and Michael Gubanov.
2017. Hybrid.media: High Velocity Video Ingestion in an In-Memory Scalable
Analytical Polystore. In IEEE Bigdata.

[52] Michael Stonebraker. 2012. Big Data Means at Least Three Different Things.... In
NIST Big Data Workshop.

[53] Mike Stonebraker, Daniel Abadi, and Adam Batkin et al. 2005. C-store: A Column-
oriented DBMS. In VLDB.

[54] Huan Sun, Hao Ma, Xiaodong He, Wen-tau Yih, Yu Su, and Xifeng Yan. 2016.
Table cell search for question answering. In WWW.

[55] Santiago Villasenor, Tom Nguyen, Anusha Kola, Sean Soderman, and Michael
Gubanov. 2017. Scalable spam classifier for web tables. In IEEE Big Data.

[56] Ran Yu, Ujwal Gadiraju, Besnik Fetahu, and Stefan Dietze. 2017. FuseM: Query-
Centric Data Fusion on Structured Web Markup. In ICDE.

	Abstract
	1 Introduction
	2 Related work
	2.1 Unified Famous Object (UFO): Definitions & Applications

	3 Architecture
	3.1 Dataset
	3.2 Ingestion
	3.3 Generating training data with SQL
	3.4 Generating Scalable Machine Learning Classifiers
	3.5 Metadata Classifier
	3.6 Search
	3.7 Interface

	4 Usage Scenarios
	4.1 Search Scenarios
	4.2 Classifier Training Scenario

	5 Unified Famous Object - Songs
	6 Ranking of Search Results
	6.1 Baseline Ranking
	6.2 Using trained classifiers and Unified Famous Objects to get more relevant search results

	7 Evaluation
	8 Conclusion
	9 Acknowledgments
	References

