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ABSTRACT
Volume and Variety of Big data [Stonebraker, 2012] are sig-
nificant impediments for anyone who wants to quickly un-
derstand what information is inside a large-scale dataset.
Such data is often informally referred to as ’dark’ due to
the difficulties of understanding its contents. For example,
there are millions of structured tables available on the Web,
but finding a specific table or summarizing all Web tables
to understand what information is available is infeasible or
very difficult because of the scale involved.

Here we present and demonstrate CognitiveDB, an intel-
ligent cognitive data management system that can quickly
summarize the contents of an unexplored large-scale struc-
tured dataset, visualize it for interactive navigation, under-
standing, and support intelligent query processing.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: General.

Keywords
Web-search; Large-scale Data Management; Cloud Comput-
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tion.

1. INTRODUCTION
Increasing amounts of data are produced every year at

a staggering rate, yet technological barriers to data access
have limited their usefulness. For example, data scientists
at large enterprises desire to enrich their data to do a better
job in predictive analytics tasks. However, their previous
experiences enriching this data from external data sources
suggest that data acquisition costs are high, therefore they
are reluctant to spend their time finding and acquiring all
missing data pieces. Consequently, they do not take all rele-
vant data into account, which leads to degraded performance
of their predictive algorithms.
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Consider a data scientist who is trying to predict hard
cider sales in the regions of interest to be able to restock
accordingly for the next season. Since consumption of hard
cider is correlated with weather, access to the complete weather
data per region would improve prediction accuracy. How-
ever, such a dataset is not available internally, hence, the
data scientist is considering enriching existing data with de-
tailed weather data from an external data source (e.g. the
Web). However, the cost to do ETL (Extract-Transform-
Load) from a large-scale external data source like the Web
in order to integrate weather data is expected to be high,
therefore the data scientist never acquires the missing data
pieces and does not take weather into account.

In response, we present CognitiveDB - a new interactive
Web-based navigator that quickly provides meaningful in-
sight into an unknown, large-scale structured data set, to
help identify and locate information of interest. Figure 2
illustrates a view through CognitiveDB onto a large-scale
structured dataset, containing 36 million tables extracted
from the Web. The left pane of the interface contains a bul-
leted list, which stores the main tables of objects sorted by
their rank. The right pane displays a graph of these groups
and the tables in each group. A sample of the data is dis-
played in the right pane when the user clicks on the table in
the left pane.

To identify and rank the main tables amongst millions
of tables in a large-scale structured dataset, we introduce
OBRank (rank of an Object), an algorithm to measure ta-
ble importance in the dataset. Similar to PageRank [Brin
and Page, 1998] that operates on the Web graph, we con-
struct a graph from tables in the dataset and account for
the direction and degree of a node in this graph to calculate
the node rank. Then, having calculated OBRank, we group
the tables by their rank, and display a list of tables with
the highest rank to the user (see Figure 1, left pane). With
such a concise summary, the user can quickly grasp what a
large-scale structured dataset is mostly about, without hav-
ing to spend time fully exploring it. Without OBRank and
CognitiveDB this task becomes prohibitively difficult and
the user is faced with millions of tables and the problem of
understanding what is inside the dataset. There is no con-
cise summary of the dataset provided, such as the one that
CognitiveDB generates, and a few random samples of the
dataset are of little use to the user trying to discern the con-
tents. Similar to a Web search engine, the user may type an
object name into the search-box (see Figure 1) to obtain all
possible matches in the dataset. Because keyword-searches
of this type might provide inaccurate or incomplete search
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Figure 1: An easy to grasp summary of a large-scale
’dark’ dataset having millions of Web tables.

results1, we have designed an alternative option. The user
enters a few descriptive attributes for a table in the bottom
left corner (see Figure 2), in response CognitiveDB automat-
ically trains a large-scale machine learning classifier, capable
of identifying such tables and uses it in the future to answer
user queries relating to this table. The classifier is trained
only on data in the table, so it does not depend on the ta-
ble or attribute names. Such a classifier simulates human
cognitive ability (object recognition in this instance), hence
the system name CognitiveDB. Of course, human cognitive
abilities are far more advanced, however, they are extraor-
dinarily inefficient at processing large amounts of data, and
therefore unable to grasp, understand, and use a large-scale
dataset quickly.

In the rest of the paper, we will review related work (Sec-
tion 2), give an overview of the system architecture (Section
3), describe how the user can interact with CognitiveDB

(Section 4), and conclude with a brief summary of the tech-
nical problem that the paper addresses (Section 5).

2. RELATED WORK
We studied a variety of relevant systems in large-scale in-

formation extraction, search, and data management. [Lug-
mayr et al., 2017], [Lugmayr et al., 2016] are complete, com-
prehensive surveys of contemporary research in Big data.
Authors discuss what is really new in Big data, and more im-
portantly introduce a new five-Trait framework for Cognitive
Big data applicable to many real-world domains. [Cafarella
et al., 2007] investigated the problem of schema amendment
in a structured data corpus with present data tuples, but
incomplete or missing attribute names, and described an al-
gorithm (TGEN) to perform this task. In another work, [Ca-
farella et al., 2008] create a database engine AcsDB (attribute
correlation statistics database) that ingests Web tables for
use in different scenarios. They describe several use cases (in

1The same table might be referred to by different names,
moreover many extracted Web tables do not have names at
all - just attributes and data rows.

Figure 2: A metadata sample of the most prominent
group of Web tables (Group 1).

context of the same dataset): schema auto-complete (given a
set of attributes, suggest more relevant attributes), attribute
synonym finding (given an attribute, suggest synonymous
attributes), and join-graph discovery. [Balmin et al., 2004]
describe an algorithm to calculate rank of nodes, resulting
from keyword-search over a database. The authors apply it
to rank publications in DBLP. They use the intuition simi-
lar to Pagerank to propagate authority through the graph of
publications in DBLP. Our graph is constructed from tables
in the large-scale dataset and their connections and differs
from the graph in [Balmin et al., 2004]. The algorithm to cal-
culate and propagate rank is also different. [Pimplikar and
Sarawagi, 2012] introduce a Web table search engine which
allows for the specification of a set of keywords, then consol-
idates a corpus of tables to retrieve a single table with these
keywords as column descriptions. The problem of matching
the column in the table to the query keyword was addressed
by exploiting the knowledge about web table context (i.e.
parent HTML document) and the page element styling in-
formation to infer table relevance to the query. However,
they do not suggest any ranking functions to help the user
find the most relevant object. [Adelfio and Samet, 2013]
also attempted to infer metadata for Web tables. They dis-
tinguished more data rows (instead of just table metadata
and data) and used this information to improve attribute
name inference from the data. They also used page ele-
ment styling as a hint to assist with solving the problem of
schema extraction. Finally, they applied these techniques to
spreadsheet data, another source of structured data. [Bal-
akrishnan and et al, 2015] discuss the problem of web table
corpus construction and created a search engine to query
these web table corpuses, presenting the query result in a
reusable format. They use supervised Machine Learning as
well as simple heuristic rules to wipe out uninformative web
tables. They also use Machine Learning to match tables to
queries by detecting relationships between columns.

Unfortunately, these recent contributions, while very im-
portant in their own ways, do not provide an easy to grasp
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Figure 3: CognitiveDB Software Architecture

summary of a large-scale structured dataset that can be
used to quickly understand what is inside the ’dark data’
dataset. CognitiveDB summarizes the dataset contents and
outputs a concise list of main tables ranked by their foot-
print in the dataset and connectivity to other tables. The
object-identifying classifiers, generated by CognitiveDB are
trained on data, hence do not depend on table name, and
do not suffer from mismatches to ’dirty’ metadata that is
usually the case for any table search engine matching the
table/attribute names to retrieve query results.

3. SOFTWARE ARCHITECTURE
The architecture of CognitiveDB is depicted in Figure 3,

the components of which are described below in more detail.
Web Data: We use a focused crawl of a portion of the Web
(open to crawlers as declared by robots.txt) using Nutch
[Khare and Cutting, 2004], index the crawl with Lucene in-
verted indexing [luc, 2011], then use a part of the crawl to
extract Web tables by iterating over the indexed corpus. A
detailed description of these steps is not a focus of our discus-
sion here and is omitted due to space constraints [Cafarella
et al., 2008, Cafarella et al., 2007, Etzioni and et al, 2004,
Gubanov et al., 2009, Paton et al., 2016, Gubanov, 2017b,
Gubanov et al., 2014, Gubanov et al., 2016].
Ingestion: The tables extracted in the previous step are
cleansed and ingested into a large-scale parallel column store
for further analysis. The data coming from the Web are usu-
ally ’dirty’ (examples include empty tables, junk advertise-
ments, typos and misspellings) and requires cleaning before
ingestion. Detailed description of these steps is not a focus of
our discussion here and is omitted due to space constraints
[Cafarella et al., 2008, Chu and et al, 2015, Gubanov and
Pyayt, 2013, Gubanov and Bernstein, 2006b, Gubanov et al.,
2011, Gubanov and Pyayt, 2012, Gubanov and Shapiro,

2012, Gubanov et al., 2009, Gubanov and Stonebraker, 2014,
Gubanov and Bernstein, 2006a, Gubanov and Pyayt, 2016,
Gubanov, 2017a, Priya et al., 2017, Gubanov, 2017b].
Object retrieval with SQL: Once all tables have been
cleaned and ingested into a parallel column store, a scalable
algorithm is required to identify and group similar tables.
For example, course and class might be used for University
course data, while vehicle and car might be used for auto-
mobile research. We started by designing and optimizing
SQL queries to run over a large-scale parallel column store
to retrieve groups of similar objects.
Generating Scalable Machine Learning Classifiers:
To improve accuracy of retrieval, we train an ensemble of
large-scale Machine Learning classifiers, based on several
descriptive keywords entered by the user. Figure 5 demon-
strates automatic generation of a classifier detecting Album
tables given several descriptive keywords from the user. En-
tering a few keywords is easier for anyone who wants to train
a classifier compared to labeling the training data needed for
training any supervised Machine learning model. The user
empirically identifies a set of attributes that an object of
interest is likely to possess. Then we take these attributes
and generate a parallel SQL query extracting objects with
these attributes from the dataset, similar to what a decision-
tree Machine Learning classifier would do [Mitchell, 1997].
We observe a wide range of Precision/Recall (65-90%) for
this type of extraction, based solely on attributes. To im-
prove accuracy, we train an ensemble of C4.5 trees with a
Naive Bayes Multinomial using the previously mentioned ex-
traction as positively labeled training data [Mitchell, 1997].
We intentionally create a high-precision decision tree extrac-
tor with lower recall to get cleaner training data. We then
amend it with automatically generated negative examples.
Interface: We designed an easy to use user interface to
navigate and display a summary of a structured, large-scale
dataset. The left frame (Figure 1) shows a ranked list of
main data objects identified in the dataset with their as-
signed groups, the right frame displays a graph of relation-
ships. This high-level structured summary of the dataset al-
lows the user to quickly understand and navigate the dataset,
an otherwise challenging task considering the scale involved.
Based on their footprint in the dataset and their relation-
ships to other objects, the objects are ranked. Section 4
describes the interface and user interactions in more detail.
Object Ranking is described below.
Dataset: We used a parallel relational column-store, run-
ning in a distributed environment [Kornacker and et al,
2015, Stonebraker et al., 2005] to store 36 million Web ta-
bles, and then ran summarization, ranking, and classifica-
tion experiments. The dataset had a total of 86 million
data instances.
Object Ranking: The objects, displayed in the left frame
of the interface (Figures 1,2,4,5) are ranked using the OBRank
formula below. This ranking function has two components.
The first one is the number of instances of an object in the
dataset, the second component depends on relationships of
an object with other objects. Hence, a highly connected
object having fewer instances in the dataset might have a
better ranking compared to an object with more instances,
but no connections. Hence, we define OBRank as:

OBRank(P ) = log(w(P )) +

n∑
Pj∈BP

log(RPj ) (1)
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Figure 4: A data sample from one of the largest
objects in the datset (House, Group 1)

where OBRank(P ) is the rank of object P ; n is the number
of objects referring to object P : j = 0 . . . n; BP is the set
of objects that P is referring to. For example, if the Ar-
ticle has an attribute Author, we define that Author refers
to Article. RPj is the number of references from P to Pj .
w(P ) is the weight of object P equal to the total number
of instances of P in the dataset. For example, Author has
13,564 instances and 21,879 references to Article, hence the
rank is 19.51. Artist having 255,357 references to Songs has
rank 24.9. Studio having 16,168 references to Films has rank
19.38. These are examples of OBRank calculation, based on
the connectedness of our dataset. It would be different for
another dataset having different connectivity among the ob-
jects. If an object in the dataset is orphaned, the second
component of the OBRank formula will be zero. However,
the first component will be non-zero and still meaningfully
reflect the importance of an object in the dataset [Brin and
Page, 1998, Gubanov et al., 2009, Gubanov and Bernstein,
2006b].

4. DEMONSTRATION
The online demo screencast of CognitiveDB in action is

available on YouTube2. Figures 1, 2, 4, 5 illustrate the inter-
active Web interface. In all of them, the left frame displays a
summary of the large-scale structured dataset in a form of a
treeview of groups of main objects sorted by their OBRank.
This is similar to how a Web-search engine would rank Web
pages using static ranking like PageRank [Brin and Page,
1998] and relative similarity to the user query. All objects
with the highest rank are assigned to Group 1, lower ranked
to Group 2, etc. The right frame content changes depending
on the user actions. We demonstrate the working Cogni-

tiveDB prototype via the following use cases.
Summarization: The user provides a new large-scale (mil-
lions of tables) structured dataset in specific pre-defined for-
mat, suitable for rapid ingestion. The system ingests the
dataset, automatically identifies, groups, and ranks the main
tables by OBRank and displays a summarizing treeview in
the left pane (Figure 1).
Connectivity: The user selects a group of objects in the
left pane and the system generates a graph of objects with
relationships in the right pane (Figure 1).
Data sampling: The user selects a specific object in the
left pane, then a small sample of its instances is displayed
in the right pane (Figure 4).
Metadata sampling: The user clicks on the Metadata link
adjacent to the cluster name in the left pane. The system
outputs in the right pane the list of objects with attributes
from the selected group (Figure 2).

2https://youtu.be/ovdscf6evHk

Figure 5: Automatic generation and training of a
large-scale machine learning ensemble recognizing
an object of interest, given just three descriptive
attributes from the user and no additional training
data.

Classifier generation: The bottom part of the left pane
in Figure 5 consists of a set of text forms, where the user
can enter the attributes best describing an object and have
the system generate and train the classifier to identify such
objects. Once the classifier is generated, a sample of newly
classified objects is shown to the user in the right pane.
If the user is satisfied with the results (i.e. the classified
instances in the right pane are what the user has expected),
s/he can click the Add to schema button, which saves the
new classifier in the system and includes it in the left pane’s
treeview.

5. CONCLUSION
CognitiveDB is a working navigator and search engine

that allows the user to visualize, understand, traverse, and
query a large-scale structured dataset. The system auto-
matically summarizes the dataset and generates a ranked
list of main tables from millions available. It also allows the
user to describe an object with a few keywords and auto-
matically train a scalable classifier recognizing such objects.
Without CognitiveDB it is very difficult to quickly get an
idea of what is inside a large-scale structured data set with
millions of tables.
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