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Abstract—As data analytics has become an important application for modern data management systems, a new category of data
management system has appeared recently: the scalable linear algebra system. In this paper, we argue that a parallel or distributed
database system is actually an excellent platform upon which to build such functionality. Most relational systems already have support
for cost-based optimization—which is vital to scaling linear algebra computations—and it is well-known how to make relational systems

scale.

We show that by making just a few changes to a parallel/distributed relational database system, such a system can be a competitive
platform for scalable linear algebra. Taken together, our results should at least raise the possibility that brand new systems designed
from the ground up to support scalable linear algebra are not absolutely necessary, and that such systems could instead be built on top
of existing relational technology. Our results also suggest that if scalable linear algebra is to be added to a modern dataflow platform
such as Spark, they should be added on top of the system’s more structured (relational) data abstractions, rather than being

constructed directly on top of the system’s raw dataflow operators.

Index Terms—Distributed Database Systems, Large Scale Linear Algebra, Vector/Matrix.

1 INTRODUCTION

ATA analytics, including machine learning and large-scale
Dstatistical processing, is an important application domain
and such computations often require linear algebra. Thus, a new
category of data processing system has appeared recently: the
scalable linear algebra system.

Unlike established, long-lived efforts aimed at building scal-
able linear algebra APIs (such as ScaLAPACK [1]), these newer
efforts are targeted more towards building complete data man-
agement systems. Not only do scalable linear algebra systems
provide support for vectors and matrices and standard operations
on them, but they also support storage/retrieval of data to/from
disk, buffering/caching of data, and automatic logical/physical
optimizations of computations (automatic re-writing of queries,
pipelining, etc.). Such systems may offer some form of recovery,
as well as offering a special-purpose domain-specific language.
For example, SystemML, developed at IBM [2], as well as RIOT
[3] and Cumulon [4] provide scalable linear algebra capabilities as
well as many features borrowed from data management systems.
Big Data systems typically provide linear algebra APIs (such
as Spark’sm11ib.linalg [5]). Modern array database systems
such as SciDB [6] also offer direct support for linear algebra.

Is a New Type of System Actually Necessary? While support-
ing scalable linear algebra in the context of a full-fledged data
management system is clearly a desirable goal, the hypothesis
underlying this paper is that with just a few changes, a classical,
parallel relational database is actually an excellent platform for
building a scalable linear algebra system.
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In practice, many (or even most) distributed linear algebra
computations have closely corresponding, distributed relational
algebra computations. Given this, we believe that it is natural to
build distributed linear algebra functionality on top of a distributed
relational database system. Such systems are highly performant,
reaping the benefits of decades of research and engineering effort
targeted at building efficient systems. Further, relational systems
already have software components such as a cost-based query
optimizer to aid in performing efficient computations. In fact,
much of the work that goes into developing a scalable linear
algebra system from the ground up [7] requires implementing
functionality that looks a lot like a database query optimizer [8].

Given that much of the world’s data currently sits in relational
databases, and that dataflow systems increasingly provide at least
some support for relational processing [9], [10], building linear
algebra support into relational systems would mean that much of
the world’s data would be sitting in systems capable of performing
scalable linear algebra. This would have several obvious benefits:

1) It would eliminate the “extract-transform-reload nightmare”,
particularly if the goal is performing analytics on data already
stored in a relational system.

2) It would obviate the need for practitioners to adopt yet
another type of data processing system in order to perform
mathematical computations.

3) The design and implementation of high-performance dis-
tributed and parallel relational systems is well-understood.
If it is possible to adapt such a system to the task of scalable
linear algebra, most or all of the science and engineering
performed over decades, aimed at determining how to build
a distributed relational system, is directly applicable.

Towards in-database linear algebra. In this paper, we ask:

Can we make a very small set of changes to the relational model
and a RDBMS software to render them suitable for in-database
linear algebra?



The approach we examine is simple: we consider adding new
LABELED_SCALAR, VECTOR, and MATRIX data types to an
SQL-based relational system. This facilitates efficient, distributed
linear algebra operations in SQL. Technically, this seems to be
a rather minor change. After all, array has been available
as a data type in most modern DBMSs—arrays can clearly be
used to encode vectors and matrices—and some database systems
(such as Oracle) offer a form of integration between arrays and
linear algebra libraries such as BLAS [11] and LAPACK [12].
However, these previous, ad-hoc approaches do not offer complete
integration with the database system. The query optimizer, for ex-
ample, does not understand the semantics of calls to linear algebra
operations, and this results in lost opportunities for optimization.
Thus, we also consider a small set of changes to a relational query
optimizer that can render it somewhat “linear algebra aware”.

There are clearly drawbacks to our minimalist approach.
Compared to systems such as SystemML and Riot, which offer
higher-level, non-SQL programming abstractions, a programmer’s
intent may be obfuscated by using an extended SQL. For example,
an optimizer implemented by our approach may be unable to
optimize the order of a chain of distributed matrix multiplies
expressed in SQL. Further, a programmer using our extensions to
implement distributed matrix operations must make key choices
regarding the blocking or chunking of the matrices.

Still, we believe that there is utility in the approach. Making
a small set of changes should virtually turn any performant SQL
database into a performant execution engine for linear algebra.
If one desires higher-level programming abstractions, it would be
possible to implement a math-like domain specific language (such
as MATLAB or SystemML’s Python-like language) or API (such
as a TensorFlow-like Python binding [13]) on fop of our proposed
extensions. That domain specific language or API could itself
exploit high-level linear algebra transformations, and translate
the computation to a database computation—with the key benefit
provided by a relational backend, there is no need to implement a
distributed, linear algebra execution engine from scratch.

Our contributions. Specific contributions of this paper are as
follows:

e We propose a very small set of changes to SQL that make it
easy for a programmer to specify even complicated compu-
tations over vectors and matrices.

e We propose a set of simple language mechanisms for moving
between purely relational data, vectors, and matrices, making
it easily possible to combine relational and linear algebra as
necessary, in one system.

e« We implement these ideas in the context of the SimSQL
parallel database system [14].

o We show experimentally that the resulting system has perfor-
mance that is comparable to a special-purpose array system
(SciDB), a special-purpose scalable linear algebra system
(SystemML), and a linear algebra library built directly on
top of a dataflow platform (Spark’s m11ib.linalg).

Simplicity and ease of implementation should be considered
a feature of our approach. Taken together, our results show
the suitability of existing, relational systems for scalable linear
algebra computations. As such, we believe that our results call
into question the need to build yet another special-purpose data
management system for linear-algebra-based analytics.

2 LA onTOP OF RA

In this section of the paper, we discuss why a relational database
system might make an excellent platform for high-performance,
distributed linear algebra. We then discuss the challenges in using
a database system for linear algebra, as well as our basic approach.

2.1 Linear and Relational Algebra

Development of distributed algorithms for linear algebra has been
an active area of scientific investigation for decades, and many
algorithms have become standard. Figure 1(a) shows the example
of performing a distributed multiplication of two large, dense
matrices, O < L X R.

For efficiency and storage consideration, matrices to be multi-
plied in a distributed system are typically “blocked” or “chunked”;
that is, they are divided into smaller matrices, which can then
be moved around in bulk to specific processors where high-
performance local computations are performed. Imagine that the
six blocks making up each of the two input matrices L and R are
distributed among three nodes as shown at the left of Figure 1(b).
The blocks from L are hash partitioned randomly, while the blocks
from R are round-robin partitioned, based upon each block’s row
identifier.

As a first step to perform the distributed multiplication, we
would shuffle the blocks from L so that all of the blocks from
L, column ¢ are co-located with all of the blocks from R, row
7. Then, at each node, a local join (in this case, a cross product)
is performed to iterate through all (Lj.i, Ri.k) pairs that can be
formed at the node. For each pair, a matrix multiply is performed,
so that Ii.j.k < Lj.ixRi.k. Finally, all of the I7.j.k blocks are
again shuffled so that they are co-located based upon their (j, k)
values—these blocks are then summed, so that the output block is
computed as Oj.k < > Ii.j.k.

The key observation underlying this paper is that this is really
Jjust a relational algebra computation over the blocks making up L
and R. The first two steps of the computation are a distributed join
that computes all (Lj.i, Ri.k) pairs, followed by a projection that
performs the matrix multiply. The next two steps—the shuffle and
summation—are nothing more than a distributed grouping with
aggregation.

The matrix multiplication example shows that distributed lin-
ear algebra computations are often nothing more than distributed
relational algebra computations. This fact underlies our assertion
that a relational database system makes an excellent platform
for distributed linear algebra. Database researchers have spent
decades studying efficient algorithms for distributed joins and
aggregations, and many relational systems are mature and highly
performant. Using a distributed database means that there is no
need to reinvent the wheel.

A further benefit of using a distributed database system as a
linear algebra engine is that decades of work in query optimization
is directly applicable. In our example, we decided to shuffle L
because R was already partitioned on the join key. Had L been
pre-partitioned and not R, it would have been better to shuffle R.
This is exactly the sort of decision that a modern query optimizer
makes with total transparency. Using a database as the basis for
a linear algebra engine gives us the benefit of query optimization
for free.

2.2 The Challenges

However, there are two main concerns associated with imple-
menting linear algebra directly on top of an existing relational
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Fig. 1: Distributed processing of a block matrix multiply.

system, without modification. First is the complexity of writing
linear algebra computations on top of SQL. Consider a data set
consisting of the vectors {Xi,Xa,...,X,}, and imagine that our
goal is to compute the distance

d3 (x4, %) = (x; —x)TA(x; — X)

for a Riemannian metric [15] encoded by the matrix A. We might
wish to compute this distance between a particular data point x;
and every other point x’ in the database. This would be required,
for example, in a kNN-based classification in the metric space
defined by A.

This can be implemented in SQL as follows. Assume the set
of vectors is encoded as a table:
data dimID,

(pointID, value)

with the matrix A encoded as another table:

matrixA (rowID, colID, value)

Then, the desired computation is expressed in SQL as:

CREATE VIEW xDiff (pointID, dimID, value) AS
SELECT x2.pointID, x2.dimID, xl.value - x2.valu
FROM data AS x1, data AS x2
WHERE x1.pointID = i and x1.dimID = x2.dimID

e

groupings. Even more concerning in practice is the fact that if the
data are dense and the number of data dimensions is large (that
is, there are a lot of dimID values for each pointID), then the
execution of this query will move a huge number of small tuples
through the system, since a million, thousand-dimensional vectors
are encoded as a billion tuples. In the classical, iterator-based
execution model, there is a fixed cost incurred per tuple, which will
translate to a very high execution cost. Vector-based processing
can alleviate this somewhat, but the fact remains that satisfactory
performance is unlikely. This fixed-cost-per-tuple problem was
often cited as the impetus for designing new systems, specifically
for vector- and matrix-based processing, or for processing of more
general-purpose atrays.

2.3 The Solution

As a solution, we propose a very small set of changes to
a typical relational database system that include adding new
LABELED_SCALAR, VECTOR, and MATRIX data types to the
relational model. Because these non-normalized data types cause
the contents of vectors and matrices to be manipulated as a single
unit during query processing, the simple act of adding these new

SELECT x.pointID, SUM (firstPart.value * x.value)types brings significant performance improvements. It becomes

FROM a.colID AS

AS value

(SELECT x.pointID AS pointID,

colID, SUM (a.value *x x.value)
FROM xDiff AS x, matrixA AS a
WHERE x.dimID a.rowlD
GROUP BY x.pointID, a.colID)

AS firstPart, xDiff AS x
WHERE firstPart.colID x.dimID

AND firstPart.pointID x.pointID

GROUP BY x.pointID

While it is clearly possible to write such a code, it is not
necessarily a good idea.

The first obvious problem is that this is a very intricate
specification, requiring a nested subquery and a view—without
the view it is even more intricate—and it bears little resemblance
to the original, simple mathematics.

The second problem is perhaps less obvious from looking at
the code, but just as severe: performance. This code is likely to
be inefficient to execute, requiring three or four joins and two

easy to implement efficient, linear algebra computations on top of
a database with these changes.

Further, we propose a very small number of SQL lan-
guage extensions for manipulating these data types and mov-
ing between them. This alleviates the complicated-code prob-
lem. In our Riemannian metric example, the two input tables
data and matrixA become data (pointID, wval) and
matrixA (val) respectively, where data.val is a vector,
and matrixA.val is a matrix. The SQL code to compute the
pairwise distances becomes dramatically simpler:

SELECT x2.pointID,
inner_product (
matrix_vector_ multiply (
a.val, xl.val - x2.val),
xl.val - x2.val) AS value

FROM data AS x1, data AS x2, matrixA AS a
WHERE x1.pointID i



In the next full section of the paper, we describe our proposed
extensions in detail.

3 OVERVIEW OF EXTENSIONS
3.1 New Types

At the very highest level, we propose adding VECTOR, MATRIX,
and LABELED_SCALAR column types to SQL and the rela-
tional model, as well as a useful set of operations over those
types (for example, diag to extract the diagonal of a matrix,
matrix_vector_multiply to multiply a matrix and a vec-
tor, matrix_multiply to multiply two matrices, and so on).
Overall, 22 different built-in functions over LABELED_SCALAR,
VECTOR and MATRIX types are present in our implementation.
Each element of a VECTOR or a MATRIX is a Double.

In this particular subsection, we focus on introducing the
VECTOR and MATRIX types; LABELED_SCALAR will be con-
sidered in detail in a subsequent subsection.

For a simple example of the use of VECTOR and MATRIX
types, consider the following table:

CREATE TABLE m (mat MATRIX([10][10],
vec VECTOR[100]);

This code specifies a relational table, where each tuple in the
table has two attributes, mat and vec, of types MATRIX and
VECTOR respectively. In our language extensions, VECTORs and
MATRIXes (as above) can have specified sizes, in which case oper-
ations such as matrix_vector_multiply are automatically
type-checked for size mismatches. For example, the following
query:

SELECT matrix_ vector multiply
AS res

(m.mat, m.vec)

FROM m

will not compile because the number of columns in m.mat does
not match the number of entries in m.vec. However, if the
original table declaration had been:
CREATE TABLE m (mat MATRIX[10][10],

vec VECTOR([10]);
then the aforementioned SQL query would compile and execute,
and the output would be a database table with a single attribute
(called res) of type VECTOR[10].

Note that in our extensions, there is no distinction between
row and column vectors; whether or not a vector is a row or
a column vector is up to the interpretation of each individual
operation. matrix_vector_multiply interprets a vector as
being a column vector, for example. To perform a matrix-vector
multiplication treating the vector as a row vector, a programmer
would first transform the vector into a one-row matrix (this
transformation is described in the subsequent subsection) and then
call matrix _multiply. Or, a programmer could transform
the matrix first, then apply the matrix_vector_multiply
function.

It is possible to create MATRIX and VECTOR types where the
sizes are unspecified:

CREATE TABLE m (mat MATRIX([10][10],

vec VECTORI([]);

In this case, the aforementioned matrix_vector_mu-
ltiply SQL query would compile, but there could possibly be
a runtime error if one or more of the tuples in m contained a vec
attribute that did not have 10 entries.
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It is also possible to have a MATRIX declaration where
only one of the dimensionalities is given; for example,
MATRIX[10] [] is acceptable. However, it is generally a good
idea for a programmer to specify the sizes in the table declaration,
if possible. If a dimensionality is given, then the system ensures
that there can be no runtime failures due to size mismatches. At
load time, data is checked to ensure the correct dimensionality, and
queries are fully type-checked to ensure that proper dimensional-
ities are used. Further, if dimensions are known, it can help the
optimization process because the optimizer is aware of the sizes
of intermediate results; a plan that uses a linear algebra operation
that greatly reduces the amount of data early on (a multiplication
of two “skinny” matrices, for example, which results in a small
output matrix) may be chosen over other plans that would be
preferred had the system not been aware of the output sizes of
operations.

3.2 Built-In Operations

In addition to a long list of standard linear algebra operations, the
standard arithmetic operations +, —, = and / (element-wise) are
also defined over MATRIX and VECTOR types. For example, the
SQL:

CREATE TABLE m (mat MATRIX([100][10]);

SELECT
FROM m

mat * mat

returns a database table which stores the Hadamard product of
each matrix in m with itself.

Since the standard arithmetic operations are all overloaded to
work with MATRIX and VECTOR types, it means that the standard
SQL aggregate operations all work as expected automatically.
The SUM aggregate over MATRIX type attribute, for example,
performs a + (entry-by-entry addition) over each MATRIX in a
relation. This can be very convenient for implementing mathemat-
ical computations. For example, imagine that we have a matrix
stored as a relational table of vectors, and we wish to perform a
standard Gram matrix computation (if the matrix X is stored as a
set of columns X = {x1,Xa,...,Xy, }, then the gram matrix of X
is Y iy Xfsz) This computation can be implemented using our
extensions simply as:

CREATE TABLE v (vec VECTOR[]) ;

SELECT SUM
FROM v
Arithmetic between a scalar value and a MATRIX or VECTOR
type performs the arithmetic operation between the scalar and
every entry in the MATRIX or VECTOR. In this way, it becomes
very easy to specify linear algebra computations of significant
complexity using just a few lines of code. For example, consider
the problem of learning a linear regression model. Given a matrix
X = {x1,X2,...,X, } and a set of outcomes {y1,y2; ..., Yn}, the
goal is to estimate a vector B where for each i, x;8 ~ ;. In
practice, 8 is typically computed so as to minimize the squared
loss >_;(x;8 — y;)%. In this case, the formula for 3 is given as:

1
B=(Txt) (T
7 7

This can be coded as follows. If we have:

CREATE TABLE X (i INTEGER, x_i VECTOR []);
CREATE TABLE y (i INTEGER, y_1i DOUBLE) ;

(outer_product (vec, vec))



then the SQL code to compute B is:

SELECT matrix_vector multiply (
matrix_inverse (

SUM (outer_product (X.x_ i, X.x_1i))),
SUM (X.x_1i % y_1i))

FROM X, y

WHERE X.i = y.i

Note the multiplication X.x_i * y_i between the vector
X.x_1 and the scalar y_ i, which multiplies y_i by each entry
inX.x_1.

3.3 Moving Between Types

By introducing MATRIX and VECTOR types, we then have new,
de-normalized alternatives for storing data. For example, a matrix
can be stored as a traditional triple-entry relation:

(row INTEGER, col INTEGER, value DOUBLE)

or as a relation containing a set of row vectors, or as a set of
column vectors using

mat

row_mat (row INTEGER, vec_value VECTOR[])
or
col_mat (col INTEGER, vec_value VECTOR[])

Or, the matrix can be stored as a relation with a single tuple having
the whole matrix:
(value MATRIX [][])

It is of fundamental importance to be able to move around
between these various representations, for several reasons. Most
importantly, each has its own performance characteristics and
ease-of-use for various tasks; depending upon a particular com-
putation, one may be preferred over another.

Reconsider the linear regression example. Had we stored the
data as:

CREATE TABLE X
CREATE TABLE y

mat

(mat MATRIX
(vec VECTOR

[(101)7
(1)

then the SQL code to compute B would have been:

SELECT matrix_vector multiply (
matrix inverse (
matrix_multiply (trans_matrix
matrix_vector multiply (
trans_matrix (mat), vec))
FROM X, y

(mat), mat))

Arguably, this is a more straightforward translation of the
mathematics compared to the code that stores X as a set of vectors.
However, it may not perform as well because it may be more
difficult to parallelize on a shared-nothing cluster of machines.
In comparison to the vector-based implementation, the matrix
multiply XTX is implicit in the relational algebra.

Since different representations are going to have their own
merits, it may be necessary to construct (or deconstruct) MATRIX
and VECTOR types using SQL. To facilitate this, we introduce
the notion of a label. In our extension, each VECTOR attribute
implicitly or explicitly has an integer label value attached to it
(if the label is never explicitly set for a particular vector, then its
value is —1 by default). In addition, we introduce a new type called
LABELED_SCALAR, which is essentially a DOUBLE with a label.
Using those labels along with three special aggregate functions
(ROWMATRIX, COLMATRIX, and VECTORIZE), it is possible to
write SQL code that creates MATRIX types and VECTOR types,
respectively, from normalized data.

For example, reconsider the table:

CREATE TABLE y (i INTEGER, y_1i DOUBLE) ;
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Imagine that we want to create a table with a single vector
tuple from the table y. To do this, we simply write:

SELECT VECTORIZE
FROM vy

Here, the 1abel_scalar function creates an attribute of type
LABELED_SCALAR, attaching the label i to the DOUBLE y_1i.
Then, the VECTORIZE operation aggregates the resulting values
into a vector, adding each LABELED_SCALAR value to the vector
at the position indicated by the label. Any “holes” (or entries in
the vector for which no LABELED_SCALAR were found) in the
resulting vector are set to zero. The overall number of entries in
the vector is set to be equal to the largest label of any entry in the
vector.

As stated above, VECTOR attributes implicitly have labels, but
they can be set explicitly as well, and those labels can be used to
construct matrices. For example, imagine that we want to create a
single tuple with a single matrix from the table:

mat (row INTEGER, col INTEGER, value DOUBLE)
We can do this with the following SQL code:

CREATE VIEW vecs AS
SELECT VECTORIZE (label_scalar
AS vec, row
FROM mat
GROUP BY

(label_scalar (y_i, 1i))

(val, col))
row
followed by:

SELECT ROWMATRIX (label_vector (vec,
FROM vecs

row) )

The first bit of code creates one vector for each row, and
the second bit of code aggregates those vectors into a matrix,
using each vector as a row. It would have been possible to create
a column matrix by first using a GROUP BY col and then
SELECT COLMATRIX.

So far we have discussed how to de-normalize relations into
vectors and matrices. It is equally easy to normalize MATRIX and
VECTOR types. Assuming the existence of a table 1abel (id)
which simply lists the values 1, 2, 3, and so on, then one can
move from the vectorized representation (found in the vecs view

" defined above) to a purely-relational representation using a join
of the form:

SELECT label.id, get_scalar
FROM vecs, label

(vecs.vec, label.id)

Code to normalize a matrix is written similarly.

4 IMPLEMENTATION

We have implemented all of these ideas on top of the SimSQL
distributed database system [14]. SimSQL is a prototype database
system designed to perform scalable numerical and statistical
computations over large data sets, written mostly in Java, with
a C/C++ foreign function interface.

In this section, we describe some details regarding our imple-
mentation. In building linear algebra capabilities into SimSQL, our
mantra was “incremental, not revolutionary”. Our goal was to see
whether, with a small set of changes, a relational database system
could be a reasonable platform for distributed linear algebra.

4.1 Distributed Matrices?

One of the very first questions that we had to ask ourselves
when architecting the changes to SimSQL to support vectors
and matrices was: should we allow individual matrices stored



in an RDBMS to be large enough to exceed the size of RAM
available on one machine? Should individual vectors and matrices
be distributable objects?

After a lot of debate, we decided that, in keeping with a
traditional RDBMS design, SimSQL would enforce a requirement
that all vectors and matrices should be small enough to fit into
the RAM of an individual machine, and that individual vectors
and matrices would not be distributed across multiple machines.
Since our mantra was “incremental, not revolutionary,” we did not
want to replace database tables with new linear algebra types—
which would effectively give us an array database system. Thus,
vectors/matrices are stored as attributes in tuples. And since dis-
tributing individual tuples or attributes across machines (or having
individual tuples larger than the RAM available on a machine) is
generally not supported by modern database systems, it seemed
reasonable to not to support this in our system.

Of course, one might ask, What if one has a matrix that is too
large to fit into the RAM of an individual machine? This might
be a reasonably common use case, and it would be desirable to
support very large matrices. Fortunately, it turns out that one can
still handle efficient operations over very large matrices using an
RDBMS. For example, a large, dense matrix with 100,000 rows
and 100,000 columns and requiring nearly a terabyte to store in
all can be stored as one hundred tuples in the table:
bigMatrix (tileRow INTEGER, tileCol INTEGER,

mat MATRIX[10000][100007])
Efficient, distributed matrix operations are then easily pos-
sible via SQL. For example, to multiply bigMatrix with
anotherLargeMat:
anotherLargeMat (tileRow INTEGER,

tileCol INTEGER, mat MATRIX[10000][100001)
We would use:

SELECT lhs.tileRow, rhs.tileCol,

SUM (matrix multiply (lhs.mat, rhs.mat))
FROM bigMatrix AS lhs, anotherlLargeMat AS rhs
WHERE lhs.tileCol = rhs.tileRow
GROUP BY lhs.tileRow, rhs.tileCol
The resulting, very efficient computation is identical to what one
would expect from a distributed matrix engine.

4.2 Storage

Given such considerations, storage for vectors and matrices is
quite simple. Vectors are stored in dense fashion, as lists of double-
precision values, along with an integer label (since, as described in
the previous section, all vectors are labeled with a row or a column
number so that they can be used to construct matrices). This may
sometimes represent a waste if vectors are indeed sparse, but if
necessary vectors can easily be compressed before being written
to secondary storage.

Matrices, on the other hand, are stored as sparse lists of
vectors, using a run-length encoding scheme (missing vectors are
treated as consisting entirely of zeros). As described previously,
matrices can be stored as lists of column vectors or lists of row
vectors; the exact storage format is specified during matrix con-
struction (via either the ROWMATRIX or COLMATRIX aggregate
function).

4.3 Algebraic Operations

SimSQL is written mostly in Java, which presented something of
a problem for us when implementing linear algebra operations:
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some readers of this paper will no doubt disagree, but after
much examination, we felt that Java linear algebra packages still
lag behind their C/FORTRAN contemporaries in terms of raw
performance. While a high-performance C implementation is (in
theory) available to a Java system via JNI, passing through the
Java/C barrier typically requires a relatively expensive data copy.

The solution that we implemented is, in the end, a compromise.
We decided not to use any Java linear algebra package. The
majority of SimSQL’s built-in linear algebra operations (indeed,
the majority of any linear algebra system’s built-in operations),
are simple and easy to implement efficiently: extracting/setting
the diagonal of a matrix, computing the outer product of two
vectors (which is of linear cost in the size of the output matrix),
scalar/matrix multiplication, and so on. All such “simple” opera-
tions are implemented in Java, directly on top of our in-memory
representation.

There is, however, another set of operations (matrix inverse,
matrix-matrix multiply, etc.), that are much more challenging to
implement in terms of achieving good performance and deal-
ing with numerical instabilities. For those operations, we use
SimSQL’s foreign function interface to transform vector- and
matrix-valued inputs into C++ objects, where we then use BLAS
implementations to fulfill the operations.

4.4 Aggregation

The extensions proposed in this paper require two new types of
aggregation. First, we must be able to perform standard aggregate
computations (SUM, AVERAGE, STD_DEV, etc.) over vectors and
matrices. Since, in SimSQL, these standard aggregate computa-
tions are all written in terms of basic arithmetic operations (+,
-, %, etc.), the standard aggregate computations over vectors and
matrices all happen “for free” without any additional modifications
to the system.

Second, our extensions require a few new aggregate func-
tions with special semantics: VECTORIZE, ROWMATRIX, and
COLMATRIX. The first constructs a vector out of a set of
LABELED_SCALAR objects. The latter two construct a matrix
out of a set of vectors. All are implemented within the system
via hashing. For example, in the case of VECTORIZE, all of the
LABELED_SCALAR objects used to build the vector are collected
in a hash table (in the case of a GROUP BY clause, there would
be many such hash tables). Since aggregation is performed in a
distributed manner, hash tables from different machines that are
being used to create the same vector will need to be merged into a
single hash table on a single machine. Merging may also need to
happen if there are enough groups during aggregation that memory
is exhausted; in this case, a partially-complete hash table may need
to be flushed to disk. Any merge (or insertion into the hash table)
that causes two LABELED_SCALAR objects with the same label
to be added to the vector results in a runtime error.

Once all of the LABELED_SCALAR objects for a vector have
been collected into a single hash table, the objects are sorted based
on the position labels, and are then converted into a vector. Any
missing entries are treated as zero, and the length of the resulting
vector is equal to the largest label used to construct the vector.

Matrices are constructed similarly, with one change being that
the objects hashed to construct the matrix are VECTOR objects,
rather than LABELED_SCALAR objects. Note that by definition,
all VECTOR objects are labeled, and it is those labels that are used
to perform the aggregation.



4.5 Balancing Distributed Computation

In distributed databases, the most common way in which data are
partitioned across machines is hash partitioning—the randomness
associated with hash partitioning affords some protection against
skew. Specifically, a key or keys are hashed, and the result is
moded by the number of machines or cores, then, each data object
is stored on the unit indicated by the mod result.

We quickly realized that hash partitioning is problematic in
the case of distributed linear algebra. Hash-based partitioning
implicitly relies on the assumption that the number of data
objects is large. In this case, the law of large numbers assures
us that the number of objects assigned to each machine will not
differ substantially from the expected (average) number of objects
assigned to each machine, resulting in a balanced computation.
However, in the case of matrix and vector processing, the number
of objects in a typical data set is often ideally not large, rendering
a random partitioning ineffective.

The reason that the number of data objects to process should
be small (even for very large linear algebra problems) is that when
processing very large vectors and matrices, it is necessary to tile
the matrix into a set of matrix blocks—see Section 4.1. But it
is also desirable to force the number of blocks to be as small
as possible, as it tends to reduce the amount of communication
performed in a distributed linear algebra computation.

For example, consider multiplying two 10° by 10° matrices.
Partitioning the matrices into 1,000 by 1,000 blocks results in 104
different blocks. As seen in Section 4.1, matrix multiply is a join
ontileCol = tileRow followed by an aggregation. This join
will result in 10% x 102 output blocks, or 10% x 8MB = 8TB of data
(there will be 100 blocks with the same t i 1eRow value for each
tileCol value on the left-hand-side of the join). This 8TB of
data must then be shuffled during a distributed aggregation, which
is going to be expensive. But this cost can be reduced dramatically
by increasing the block size, and decreasing the number of blocks.
If we instead tiled the matrix using 10* by 10# blocks, this would
result in only 102 different blocks, and the join would result in
only 102 x 10 output blocks, or less than one TB of data to shuffle.

Hence, it generally makes sense to tile large vectors/matrices
into large blocks—in our implementation, the default is one
tileCol value per core in the distributed system. Then, during
an operations such as a distributed matrix multiply, each core is
assigned all of the blocks with a particular t i 1eCol value, where
those blocks join with all of the other blocks having a matching
tileRow value.

Then the problem appears. If tileCol values are assigned
randomly by a hash function (so that we are assured that only the
average number of ti1eCol values per core is one), we find that
many cores are left with no work to do, while others are assigned
four or five tileCol values, and they become stragglers.

Our solution to this is to treat computations over tiled matrices
differently from other computations. When a database system
being used for linear algebra is aware that a particular matrix
attribute is used to store a block from a large, dense matrix, it
should partition data by direct moding, rather than by hashing
and then moding. Because (by definition) dense matrices are not
skewed (each row/column value is as common as every other
row/column value) there is no reason to hash. Further, avoiding
the hash protects against stragglers. As we will show experimen-
tally, this simple change can often speed up distributed matrix
computations by a factor of two or more.

Fig. 2: A simple, suboptimal query plan. The projection at top

computes matrix_multiply (r_matrix, s_matrix).

5 TYPING AND OPTIMIZATION
5.1 Vector and Matrix Sizes

In practical applications, the individual matrices stored in a
database table can range from a few bytes in size to many
gigabytes in size. Hence, knowing the size of individual linear
algebra object stored in a database is going to be of fundamen-
tal importance during query optimization. Unfortunately, linear
algebra objects are typically manipulated via a large set of user-
defined and system-provided functions that change the sizes of the
objects being manipulated in ways that are regular, but opaque to
the system. This can easily result in the choice of a query plan that
is far from optimal.

The problem can be illustrated by a simple example. Assume
we have three tables defined as below:
R (r_rid INTEGER, r_matrix MATRIX[10][1000007)
S (s_sid INTEGER, s_matrix MATRIX[100000][100])
T (t_rid INTEGER, t_sid INTEGER)
Imagine that the sizes of the tables R, S, and T are 100 tuples,
100 tuples, and 1,000 tuples, respectively. Now, suppose we want
to calculate the product of a number of pairs of matrices from the
relations R and S, where the pairs for which we need to obtain are
indicated by T:
SELECT matrix multiply

FROM R, S, T
WHERE r rid =

(r_matrix, s_matrix)

t_rid AND s_sid = t_sid

A rule-based optimizer, or a cost-based optimizer without access
to good information about the size of the linear algebra object
being pushed through the system, is almost assuredly going to
produce the query plan depicted in Figure 2.

The plan is straightforward. Since no predicate links tables
R and S, the optimizer is going to first join either R and T
or else S and T before joining the third table. After joining all
three tables, the linear algebra computation matrix_multiply
(r_matrix, s_matrix) isthen computed as part of a rela-
tional projection operation.

In this example, the join between tables S and T produces
about 1,000 tuples (estimated as W), each containing an
80MB matrix (estimated as 8 x 100000 x 100 bytes). Thus, the
total data produced in this join is about 80 GB.

However, this is clearly not the optimal query plan. It is
possible to do a lot better, as illustrated in Figure 3.

Here we first perform a join between the tables S and R, despite
the lack of a join predicate. A projection on the join result calcu-
lates the product between r_matrix and s_matrix. While the
join between the tables S and R produces 10,000 tuples, the early



Fig. 3: A better query plan that computes the cross product of S
and R first, which allows early evaluation of matrix_multiply
(r_matrix, s_matrix).

projection allows the optimizer to produce a plan that performs
thematrix_multiply (r_matrix, s_matrix) early,to
effectively remove all of the large matrices from the plan; the result
of each matrix multiply is only 8KB (estimated as 8 x 10 x 100
bytes). Thus, the total data produced in this join and projection is
about 80 MB, and it is likely far superior.

5.2 Type Signatures

To make sure that the SimSQL optimizer has the information
necessary to choose the correct plan, the type signature for any
function that includes vectors and matrices is templated. The type
signature takes (as an argument) the size and shape of the input,
and returns the size and shape of the output. For example, the
function signature of the built-in function diag (computing the
diagonal of a matrix) is:

diag (MATRIX[a] [a]) —> VECTOR[a]

This signature constrains the input matrix to be square, and it

indicates that the output vector has a number of entries identical

to the number of rows/columns of the input matrix. The signature

formatrix_multiply is:

matrix_multiply (MATRIX[a] [b], MATRIX[b][c]) ->
MATRIX[a] [c]

In this signature, the arguments a, b, and c effectively parame-

terize the function signature. This information is then used by the

optimizer to infer the exact dimensions of the output object. For

example, consider the schema:

U (u_matrix MATRIX[1000][1007])
V (v_matrix MATRIX[100][10000])

And the query:

SELECT matrix multiply (u_matrix,
FROM U, V

v_matrix)

The optimizer obtains the dimensions of the u_matrix and
v_matrix objects by looking in the catalog. Note that the user-
specified dimensionality for vector/matrix data is enforced by the
system during data loading.

When the dimensions of u_matrix are retrieved from the
catalog, the type parameter a is bound to 1000, and b is bound
to 100. When the dimensions of v_matrix are retrieved, b is
bound a second time to 100 (a different value for b would cause a
compile-time error) and ¢ is bound to 10000. Hence, the output
of the matrix multiply is a 1000-by-10000 matrix of approximately
80 MB in size; this information can subsequently be used by the
optimizer.
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By convention, the SimSQL optimizer always assumes that
matrices are dense, and so a matrix of dimensions a and b has size
(8 bytes) xa X b. While not always accurate, this is a pessimistic,
and hence safe assumption, that will typically avoid choosing poor
plans.

5.3 unknown Dimensionalities

Note that size parameters can also take a special value unknown,
so that it is possible to have:

U (u_matrix MATRIX[1000]T[])

Here, the number of columns in the matrix is un-
known at compilation/optimization time—this is typically used
when the table U has matrices with a different number of
columns. In this case, when the optimizer encounters matrix_-
multiply (u_matrix, v_matrix), the signature parame-
ter b will get nothing from u_matrix, and it will be bound to
100 referring to the dimension of v_matrix.

Note that it is possible to have dimensions of unknown
sizes that the optimizer is unable to resolve, so that planning
must take place over vectors/matrices whose sizes are not known.
This can be handled in a reasonable way by associating an
estimated size with each unknown dimension value. In SimSQL,
statistics are collected regarding the (approximate) number of
distinct attribute values and the (approximate) average, physical
size of those attribute values. This data is collected using a
lightweight, randomized algorithm, as data are loaded, and also
when materialized views are created. These statistics are then
stored in the system catalog. Given this data, a vector attribute
whose dimensionality is tagged as unknown can be given an
estimated dimensionality of estimated avg att size/8,
since the storage required for each entry in the vector is 8 bytes. A
matrix attribute with one unknown dimensionality and another
whose size is m can be given an estimated value of estimated
avg att size/(8xm).If both dimensions are unknown, then
the matrix can be assumed to be square for estimation purposes.

Estimates produced in this way for the dimensionality of
vectors will typically be highly accurate, since vector types are
always stored densely. However, estimates for the dimensionality
of matrices can be more problematic. As SimSQL matrices are
stored as a (possibly) sparse list of column/row vectors, estimates
for the size of unknown dimensions can be lower than the reality
for sparse data. In terms of choosing a poor plan, this could
pose a problem for the optimizer. As such, it is always good for
a programmer to avoid the use of unknown dimensions if not
absolutely necessary.

6 EXPERIMENTS

We have implemented all of the capabilities described in the paper
on top of SIimSQL, and in this section, we experimentally evaluate
the utility of the new capabilities.

This section consists of four different sets of experiments.
In the first set of experiments, we compare the efficiency of
SimSQL with the new linear algebra types with several alternative
platforms, on a set of relatively straightforward compilations. In
the second set of experiments, we consider a couple of relatively
complicated machine learning computations, and show how the
addition of matrix and vector types to the relational model can
greatly speed the underlying machine learning computations. In
the third set of experiments, we run several examples with and



without the query optimizer being aware of the matrix and vector
size information, in an attempt to demonstrate the importance
of integrating the templated dimensionality information into the
optimizer. And in a fourth set of experiments, we use the block
matrix multiply to show the runtime improvement brought by our
non-random partitioning.

6.1 Comparison Across Platforms

This subsection evaluates our proposed addition of VECTOR and
MATRIX types by comparing SimSQL to a number of alternative
platforms.

Platforms Tested. The platforms we evaluated are:

(1) SimSQL. We tested several different SimSQL implementa-
tions: Without vector/matrix support (the original SimSQL im-
plementation, without the improvements proposed in this paper),
with data stored as vectors, and with data stored as vectors, then
converted into blocks.

(2) SystemML. This is SystemML V0.9, which provides the
option to run on top of Hadoop. All computations are written
in SystemML’s DML programming language.

(3) SciDB. This is SciDB V14.8. All computations are written in
SciDB’s AQL language which is similar to SQL.

(4) Spark m11ib.1linalg. This is run on Spark V1.6 in stan-
dalone mode. All computations are written in Scala.

Computations Performed. In our experiments, we performed
three different representative computations.

(1) Gram matrix computation. A Gram matrix is the inner products
of a set of vectors. It is a common computational pattern in ma-
chine learning, and is often used to compute the kernel functions
and covariance matrices. If we use a matrix X to store the input
vectors, then the Gram matrix G can be calculated as G = X X.

(2) Least squares linear regression. Given a paired data set
{yi,x;},i = 1,...,n, we wish to model each y; as a linear
combination of the values in x;. Let y; ~ x! 8 + ¢;, where 8 is
the vector of regression coefficients. The most common estimator
for B is the least squares estimator: B = (X X)'XTy.

(3) Distance computation. We first compute the distance between
each data point pair x; and x': d% (x;,x’) = x! Ax'. Then, for each
data point x;, we compute the minimum d3 (x;,x') value over all
x' # x;. Lastly, we select the data points which have the max
value among those minimums.

Implementation Details. We now describe in some detail how
we performed each of these three computations over the various
platforms.

(1) SimSQL. A SimSQL programmer uses queries and built-in
functions to conduct computations. In SimSQL, we implemented
each model using three different SQL codes. First, we wrote a
pure-tuple based code (as on an existing, standard SQL-based
platform). Second, we wrote an SQL code where each data point
is stored as an individual vector. Third, we wrote an SQL code
where data points are grouped together in blocks, and are stored
as matrices so that they can be manipulated as a group.

The Gram matrix computation is written over tuples as:

SELECT x1.col_index, x2.col_index,
SUM (x1.value *» x2.value)

FROM x AS x1, x AS x2

WHERE x1.row_index = x2.row_index

GROUP BY x1.col_index, x2.col_index;

The Gram matrix is computed over vectors as:

SELECT SUM (outer_product (x.value,
FROM x_vm AS Xx;

x.value))

For a block-based computation, the rows are first grouped into
blocks (the table block_index (mi INTEGER) stores the
indices for blocks):
CREATE VIEW MLX (m) AS

SELECT ROWMATRIX (label_vector (

x.value, x.id - ind.mi%1000))

FROM x_vm AS x, block_index AS ind

WHERE x.id/1000 = ind.mi

GROUP BY ind.mi;
Note that this grouping step is not necessary if the data are already
stored as blocks; in our experiments, we count the blocking time
as part of the computation.

Then, the result is a sum of a series of matrix multiplies:

SELECT SUM (matrix_multiply (

trans_matrix (mlx.m),
FROM mlx;

mlx.m))

The calculation of linear regression is similar to Gram matrix
computation. We omit the code for brevity. We also omit the code
for tuple-based distance computation.

The key codes of vector-based and block-based distance com-
putation are given below. For the vector-based computation, we
calculate the minimum d3 (x;,x’) for each data point x; as (MX
stores the distances computed by another query):

CREATE VIEW DISTANCESM (id, dist) AS

SELECT a.datalD,

MIN (inner_product

FROM X m AS a, MX AS mxx

WHERE a.datalD <> mxx.id
GROUP BY a.datalD;

(mxx.mx_data,

And in the block-based computation we first conduct the compu-
tation x! Ax’ via a set of matrix multiplies:
CREATE VIEW DISTANCES (idl, id2, dm) AS
SELECT mxx.id, mx.id, matrix multiply (
mxx.m, matrix_multiply (mp.mapping,
trans matrix(mx.m)))

FROM MLX AS mx, MLX AS mxx, MM AS mp;

Then, the minimum values of those computations for each data
point is calculated via a series of operations on matrices.

(2) SystemML. Physically, the data in SystemML are stored and
processed as blocks, which are square matrices.

Gram matrix computation in SystemML is:
t (X)

result = $*x% X

Linear regression is omitted. The code of distance computation is:
all dist = X X_t

[T [T
S*¥ts M T*%

all dist = all_dist + diag(diag_inf)
min_dist = rowMins (all_dist)
result = rowIndexMax (t (min_dist))

(3) Sparkmllib.linalg. A Sparkmllib.linalg program-
mer must decide: should the input data be stored/processed as
vectors, or as matrices? And, if a matrix is used, should it be a
local matrix, or a distributed one? In our experiments, we tried
different vector/local matrix/distributed matrix implementations,
and selected the most efficient ones.

a.data))



For Gram matrix computation and linear regression, the
vector-based implementation is the fastest. We omit the code for
brevity.

The distance computation was challenging. After a lot of
experimentation, we found that the distributed BlockMatrix
was the best. The code is as follows:
val dist_matrix = block_matrix_x.

multiply (block_matrix_m) .
multiply (block_matrix_x.transpose)

val result =
dist_matrix.toIndexedRowMatrix.rows.map (

x => (x.index, x.vector.toArray)).
map{ case (i, a) =>
{if (i==0) a(0)=a(l)
else a(i.toInt)=a(0); (i, a.min);}
}.max () (

new Ordering[Tuple2[Long,
override def compare (
x: (Long, Double), y:
): Int =
Ordering[Double] .compare (x.

Double] ] () {

(Long, Double)

2, y-_2)1)

(4) SciDB. Data in SciDB are partitioned as chunks. We use 1000
as the chunk size for all arrays in our code.
The SciDB code of Gram matrix computation is:

SELECT » FROM gemm (transpose (x), X,

build (<val:double>[t1=0:9,1000,0,

t2=0:9,1000,01, 0));

Linear regression is similar. The implementation of the distance
computation is:
SELECT » INTO mxt
FROM gemm (m, transpose (x),
build(<val:double>[t1=0:999,1000,0,
£2=0:99999,1000,0]1, 0));

SELECT * INTO all_distance
FROM filter (gemm(x, mxt,
build (<val:double>[t1=0:99999,1000,0,
£2=0:99999,1000,0], 0)), tl<>t2);

SELECT min (gemm) INTO distance

FROM all_distance
GROUP BY t1;

SELECT »* INTO max_dist

FROM (SELECT max (min) FROM distance);

SELECT t1
FROM distance JOIN max_dist ON
distance.min = max_dist.max;

Experiment Setup. We ran all experiments on 10 Amazon EC2
m?2.4xlarge machines (as workers), each having eight CPU cores.
For Gram matrix computation and linear regression, the number
of data points per machine was 10°. For the distance computation,
the number of data points per machine was 10%. All data sets
were dense, and all data were synthetic—since we are only
interested in running time; there is likely no practical difference
between synthetic and real data. For each computational task, we
considered three data dimensionalities: 10, 100, and 1000.

Experiment Results and Discussion. The results are shown in
Figures 4, 5, and 6.

Vector- and block-based SimSQL clearly dominate the tuple-
based implementation for each of the three computations. The
results show that sometimes it is simply not possible to move
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Gram Matrix Computation

Platform | 10dims | 100 dims [ 1000 dims
Tuple SImSQL | 00:01:28 | 00:03:19 | 05:04:45
Vector SimSQL | 00:00:37 | 00:00:43 00:05:43
Block SimSQL | 00:01:18 | 00:01:23 | 00:02:53
SystemML 00:00:05* | 00:00:51 00:02:34
Spark m11ib 00:00:20 | 00:00:54 | 00:17:31
SciDB 00:00:03 | 00:00:17 | 00:03:20

Fig. 4: Gram matrix results. Format is HH:MM:SS. A star (x)
indicates running in local mode.

Linear Regression
Platform | 10dims | 100 dims | 1000 dims
Tuple SimSQL | 00:03:42 | 00:05:46 | 05:05:22
Vector SimSQL | 00:00:45 | 00:00:49 00:06:35
Block SimSQL | 00:02:23 | 00:02:22 | 00:04:22
SystemML 00:00:06% | 00:00:53 | 00:02:38
Spark m11ib 00:00:35 | 00:01:01 00:17:42
SciDB 00:00:15 | 00:00:33 | 00:06:04

Fig. 5: Linear regression results. Format is HH:MM:SS. A star ()
indicates running in local mode.

enough tuples through a database system to implement linear
algebra operations using only tuples.

To examine this further, we re-ran the tuple-based and vector-
based Gram matrix computations over 1000-dimensional data on
a five machine cluster, and this time we timed the individual
operations that made up the computation (shown in Figure 7).
Note that in the 1000-dimensional computation, in the tuple-
based computation, each tuple joins with the other 1000 values
making up the same data point, and all of those tuples need to be
aggregated. Since 5 x 10° data points are stored as 5 x 10 tuples,
this results in 5 x 10! tuples that need to be aggregated. Even
though these operations are pipelined, they dominate the running
time, as shown in Figure 7. Here we see—perhaps surprisingly—
that the the dominant cost is not the join in the tuple-based
computation, but the aggregat ion. This illustrates the problem
with tuple-based linear algebra: even a tiny fixed cost associated
with each tuple is magnified when we must push 5 x 10*! tuples
through the system.

Interestingly, we see that the vector-based computation was
faster than block-based for 10- and 100-dimensional computa-
tions. This is because our experiments counted the time of group-
ing vectors into blocked matrices. This additional computation was
not worthwhile for less computationally expensive problems. But
for the 1000-dimensional computations, additional time savings
could be realized via blocking.

For the higher-dimensional, computationally intensive com-
putations, there was no clear winner among SystemML, SciDB,
and SimSQL. SimSQL was a bit slower for the lower-dimensional
problems, because, as a prototype system, it is not engineered for
high throughput. Spark m11ib was not competitive on the higher-
dimensional data. Over the three, 1000-dimensional computations,
SimSQL, SystemML, and SciDB had geometric mean running
times of 5 minutes 7 seconds, 6 minutes 5 seconds, and 4 minutes
41 seconds, respectively.



Distance Computation

Platform | 10dims [ 100 dims | 1000 dims
Tuple SimSQL Fail Fail Fail
Vector SimSQL | 00:10:14 | 00:11:49 00:13:53
Block SimSQL | 00:03:14 | 00:04:43 | 00:10:36

SystemML 00:13:29 | 00:22:38 | 00:33:22
Spark m11ib | 01:22:59 | 01:15:06 | 01:13:06
SciDB 00:03:46 | 00:04:54 | 00:05:06

Fig. 6: Distance computation results. Format is HH:MM:SS.

The results for SimSQL, SystemML, and SciDB are close
enough to, in our opinion, be practically identical, at least on this
suite of experiments. SciDB had the fastest mean because it lacked
a particularly poor showing (unlike SimSQL, which was twice
as slow as SciDB for the distance computation, and SystemML,
which took more than six times as long), but the three means were
still very close.

We spent a lot of time trying to tune both SimSQL and
SystemML for the distance computation. In the case of SimSQL,
the problem appears to be that there are only 10° data points in
all; when grouped into blocks of 1000 vectors, this results in only
100 matrices in all. This meant that each of our 80 compute cores
had an average of 1.25 matrices mapped to it. Since SimSQL uses
a randomized, hash-based partitioning, it is easily possible for one
core to receive four or five of the 100 matrices. This resulted in a
very unbalanced computation. We observed that most cores would
finish in a short time, while just a few, overloaded cores would be
left to finish the computation in a much longer period. Better load
balancing would likely have solved this problem.

Finally, we ask the question: do these experiments support
the hypothesis at the core of the paper, that a relational engine
can be used with little modification to support efficient linear
algebra processing? In terms of performance, they seem to, though
there are some caveats in our findings. First, scalable linear
algebra systems continue to improve. For example, the SystemML
designers have recently shown that it is possible to greatly speed
up SystemML via the use of the specialized compression methods
[16]—had we evaluated a version of SystemML enhanced with
those methods, our results may have been very different. Still,
we feel that it should be possible to build such methods into
an enhanced relational database system, just as they can be built
into SystemML. A second reasonable concern with our evaluation
is that SimSQL is not a classical relational system, in that it is
built upon Hadoop; hence, is SimSQL really any different from a
special-purpose system such as SystemML? Though SimSQL is
built upon Hadoop, in most ways, it is indistinguishable from a
classical, relational system. SimSQL has an SQL compiler, a cost-
based optimizer, and a very classical relational execution engine
supporting various relational algorithms (joins, aggregations, etc.).
In our implementation, we modified only SimSQL system compo-
nents that are going to be found in any classical relational system:
the type system and the compiler, SimSQL’s costing framework
(so that operations over vectors/matrices could be costed), a set
of new built-in functions, and a few new aggregation operations.
We expect similar results were a more traditional relational system
used, but this should be verified via future work.
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Fig. 7: Comparison of Gram matrix computation for tuple-based
and vector-based SimSQL.

| Model | Implementation || Iteration time | Init time |

BL Tuple SimSQL 00:07:28 02:38:46
BL V/M SimSQL 00:04:04 00:04:44
GMM | Tuple SimSQL 00:21:16 00:11:22
GMM | V/M SimSQL 00:09:15 00:08:09

Fig. 8: Performance of GMM and BL learning. Format is
HH:MM:SS per iteration.

6.2 Machine Learning Computations

A reasonable critique of the experiments in the last section is that
it focuses exclusively on computationally intensive, linear algebra
computations. In more general machine learning computations,
one might expect that the benefit of vector- and matrix-based
computations vis-a-vis tuple-based computations would be less
pronounced.

Experiment Overview. As an attempt to investigate this further,
we ran two additional experiments, where the goal was to per-
form iterative machine learning computations aimed at learning a
Gaussian Mixture Model (GMM) and the Bayesian Lasso (BL)
[17].

The goal of learning a GMM is to estimate the mean and
covariance for a set of Gaussian components in a clustering model.
In our experiment, we generated a synthetical data set composed
of 5 x 107 data points, and distributed those data points across
five Amazon EC2 m2.4xlarge machines.

The BL is a regularized Bayesian regression model. We
produced a synthetical data set that had 5 x 10 {response,
regressor} pairs, also on five Amazon EC2 m2.4xlarge machines.
Each regressor had 1000 dimensions.

We wrote both tuple-based implementation and vector/matrix
based implementation for these two models. And we use Gibbs
samplers for learning these models.

Experiment Results. Results are given in Figure 8. Since both
learning tasks are iterative, requiring multiple scans over the data
set until convergence, the time is measured as the average time
for five iterations. We also report the initialization time, which
includes the time required to set up the initial model parameters
and to collect statistics required for initialization.

Discussion. While the disparity between the tuple-based and
vector/matrix-based implementations is less when linear algebra
objects are used as tools for building more complicated machine



learning computations, the disparity is still significant. Note that
this was the case even though our GMM computation only
utilized 10-dimensional data—one would expect the disparity to
become more acute with higher-dimensionality (because more
tuples would be produced in tuple-based implementation). Also,
note that since the BL requires a Gram matrix computation, the
BL initialization time is brought down from more than two and a
half hours to just a few minutes by using vectors and matrices for
the computations.

6.3 Size Integration in Optimizer

This subsection evaluates the importance of making the database
system aware of the relative sizes of the inputs and outputs of
vector and matrix operations.

Experiment Queries and Schemas. In this experiment, we design
three test queries. The first two are over the following schema:

R (rid INTEGER, rMatrix MATRIX[1] [m])

S (sid INTEGER, sMatrix MATRIX[m] [n])

T (tRid INTEGER, tSid INTEGER)

We create five data sets with this schema. In the first three, 1 = 10,
m = 100000, n = 100, and |R| = |S| = 30, whereas the size of
T varies, with |T| = 2000, 3000, and 4500, respectively. In data
sets four and five, m is reduced to 10000. In the fourth data set,
|R| = |s| = 30 and |T| = 2000. In fifth, |R| = |S| = 60 and
|T| = 2000.

The two queries run over this schema are as follows. Query 1 is:

SELECT matrix multiply (rMatrix, sMatrix)
FROM R, S, T

WHERE R.rid = T.tRid and S.sid = T.tSid;
And Query 2 is:

SELECT max_value (

matrix _multiply (rMatrix, sMatrix))

FROM R, S, T

WHERE R.rid = T.tRid and S.sid = T.tSid;

The third query is over the following schema:

R (rid INTEGER, rVector VECTOR[m],

rMatrix MATRIX[n] [m])
S (sid INTEGER, sVector VECTOR[m],

sMatrix MATRIX[n] [m])
T (tRid INTEGER, tSid INTEGER)
We again create five data sets. For the first three, n = 10,
m = 100000 and there are 30 tuples in the tables R and S. The
number of tuples in the table T takes values 2000, 3000, and 4500,
respectively. For the last two data sets, n = 10, m = 10000. For
data set four, there are 30 tuples in the tables R and S and 2000
tuples in the table T. For data set five, there are 60 tuples in the
tables R and S and 2000 tuples in the table T.

The query tested is:

SELECT sum_vector (

matrix_vector_ multiply (rMatrix, sVector)+
)

matrix_vector multiply (sMatrix, rVector)
FROM R, S, T
WHERE R.rid = T.tRid and S.sid = T.tSid;

Experiment Setup. We ran all experiments on 10 Amazon EC2
m?2.4xlarge machines, each having eight CPU cores. We executed
each query twice, one was optimized by an optimizer that was
aware of the sizes of linear algebra function outputs, and one
where that information was not available to the optimizer.

Experiment Results and Discussion. Results are shown in Figure
9. Fifteen query/data set combinations were run in all, and in
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eleven of the fifteen, there was not a significant running time
difference in the plans obtained with and without the linear
algebra function output sizes. However, in four cases, there was a
significant difference in running time obtained via the use of the
size information. Specifically, this was observed in Query 1 and
Query 2, for data sets two and three. It is of course reasonable
to ask: What is special about these four cases that made the size
information important?

The key difference between the first two queries and the third is
that in the first two queries, especially for the first three data sets,
the matrices stored in the tuples are quite large: 10 by 100000
(or approximately 8MB) and 100000 by 100 (or approximately
80MB). This is in contrast to the last two data sets for the first
two queries and to the data sets for the last query (where matrices
are 8MB and 800KB depending upon the data set). Thus, the
six runs over 8M and 80MB matrices have the greatest potential
for gain from choosing a “non-traditional” plan, if that plan is
able to multiply the 8M and 80MB matrices early, reducing their
size to 10 by 100 (only 8KB) and hence reducing the amount
of data pushed through the plan. And this is exactly what we
see, where for four of the queries, the running time is cut from
between 25% to 43%. Presumably, this decrease in running time
could be made almost arbitrary by increasing the value of m, which
would increase the potential reduction in size from an early matrix
multiply.

One of the most interesting findings is that there was no gain
for the first data set in the first two queries. The reason appears to
be that in this case, the data are small enough (only 2000 tuples in
T) that the two joins are fully pipelined. Hence, there is little to be
gained from an early multiply—while this aggressively attempts to
reduce the amount of data pushed through the plan, pushing a lot
of data through a fully pipelined plan is not particularly expensive
in the first place. The data are never really materialized as they
are pushed through the joins (in practice, the tuples produced will
only have pointers to the matrices they contain) and so as long as
they never need to be shuffled (which would force the matrices
to be materialized and sent over the network) there is really no
significant cost to be saved by aggressively reducing the size of
the structures by early function application.

6.4 Non-Random Partitioning

Lastly, we examine the effect of non-random (balanced) vs. ran-
dom partitioning on the runtime of large-scale matrix processing
on top of an RDBMS. To do this, we performed matrix multiplies
over two large, tiled matrices. Two experiments were run. In the
first, we multiplied two 104 by 104 matrices, and in the second we
multiplied a 10* by 10° matrix by a 10° by 10* matrix. For both
multiplications, the matrices were tiled; the number of partitions
across each dimension is p (hence each tiled matrix is broken
into p® blocks). We tested a variety of different p values. All
experiments were run on a cluster of ten Amazon EC2 m2.4xlarge
machines.

Figure 10 shows the results. A decrease of as much as 57% in
runtime was seen using a non-random partitioning. Most impor-
tantly, the fastest runtimes observed via a non-random partitioning
were 47% and 49% faster than the random partitioning achieved
via hashing for the smaller and larger matrices, respectively.

7 RELATED WORK

ScalLAPACK [1] is the best-known and most widely-used frame-
work for distributed linear algebra. However, ScaLAPACK is



Query 1 Query 2 Query 3
Optimizer Size Aware \ Not Size Aware || Size Aware \ Not Size Aware || Size Aware \ Not Size Aware
Data Set (1) 01:34 01:34 01:31 01:34 00:58 00:53
Data Set (2) 01:31 02:01 01:26 01:59 00:54 00:53
Data Set (3) 01:30 02:40 01:32 02:35 00:53 00:56
Data Set (4) 00:43 00:45 00:44 00:43 00:40 00:40
Data Set (5) 00:55 00:52 00:53 00:50 00:46 00:50

13

Fig. 9: Testing the effect of the optimizer’s awareness of linear algebra operation output size. Format is MM:SS.

Matrix Multiplication Runtime
\ 10Kby 10K [ 10K by 100K
] Value of p \ Random \ Balanced \ Random \ Balanced ‘
10 00:03:15 | 00:03:10 | 00:20:27 | 00:20:18
20 00:04:41 | 00:02:30 | 00:23:51 | 00:12:11
40 00:05:42 | 00:02:55 | 00:24:34 | 00:13:36
80 00:08:17 | 00:04:17 | 00:39:47 | 00:16:55
200 00:39:25 | 00:27:55 | 01:31:10 | 01:07:45

Fig. 10: Runtime (HH:MM:SS) of block matrix multiplication
under different partitioning schemes.

really an MPI-based API, and it is not a data management system.

As intimated in the introduction to this paper, there has
been some recent interest in combining distributed/parallel data
management systems and linear algebra to support analytics. One
approach is the construction of a special purpose data management
system for scalable linear algebra; SystemML [2] is the best
example of this. Another good example of this is the Cumulon
system [4], which has the notable capability of optimizing its own
hardware settings in the cloud. MadLINQ [18], built on top of
Microsoft’s LINQ framework, can also be seen as an example of
this. Other work aims at scaling statistical/numerical programming
languages such as R. Ricardo [19] aims to support R programming
on top of Hadoop. Riot [3] attempts to plug an I/O efficient
backend into R to bring scalability.

A second (and not completely distinct) approach is building
scalable linear algebra libraries on top of a dataflow platform. In
this paper, we have experimentally considered m11ib.linalg
[5]. Apache Hama [20] is another example of such a package. So
is SciHadoop [21].

The idea of moving past relations onto arrays as a database
data model, particularly for scientific and/or numerical applica-
tions, has been around for a long time. One of the most notable
efforts is Baumann and his colleague’s work on Rasdaman [22]. In
this paper, we have compared with SciDB [6], an array database
for which linear algebra is a primary use case.

An array-based approach that is somewhat related to what we
have proposed is SciQL [23], which is a system supporting an
extended SQL that is implemented on top of the MonetDB system
[24]. SciQL adds arrays (in addition to tables) as a second data
storage abstraction. Our proposed approach is much more modest;
rather than allowing arrays as a fundamental data abstraction,
we simply add vectors and matrices as new attribute types, with
special support, into a relational database.

There is some support for linear algebra in modern, com-
mercial relational database systems, but it is not well-integrated
into the declarative (SELECT-FROM-WHERE) portion of SQL,

and generally challenging to use. For example, Oracle provides
the UTL_NLA [25] package to support BLAS and LAPACK
operations. To multiply two matrices using this package, and
assuming two input matrices m1l and m2 declared as type
utl_nla_array_dbl (and an output matrix res defined sim-
ilarly), a programmer would write:

utl nla.blas_gemm (

transa => 'N’, transb => 'N’, m => 3, n => 3,
k => 3, alpha => 1.0, a => ml, lda => 3,
b => m2, 1db => 2, beta => 0.0, c¢c => res,

ldc => 3, pack => R);

This code specifies details about the input matrices, as well as
details about the invocation of the BLAS library.

The MADIib project [26] is an effort to build analytics,
including linear algebra functionality, on top of a database system.
MADIib is closely related to what we have described here, in that
it showed the feasibility and potentially high performance of linear
algebra on top of a database system. However, the key difference
is that MADIib uses the standard user-defined functions and user-
defined type capabilities of a modern database system. MADIib
does not integrate vector and matrix data types and operations into
the system, and hence cannot utilize some of the key proposals
in this paper—making the optimizer size aware, and using round-
robin as opposed to hash partitioning for matrix and vector types.
Further, the implementation for the matrix and vector construction
operations (such as VECTORIZE) can be quite problematic using
standard user-defined aggregate facilities.

Some work also considers offering specific optimization for
distributed linear algebra computations in a relational context.
For example, BlockJoin [27] provides a distributed join algorithm
for workloads consisting of both relational and linear algebra.
By applying specific database techniques such as index join and
late materialization, BlockJoin can avoid heavy shuffling costs for
distributed block-based linear algebra operations. Our system may
also benefit from such techniques.

8 FUTURE WORK AND CONCLUSIONS

We have proposed a small set of changes to SQL that can render
any distributed, relational database engine a high-performance
platform for distributed linear algebra. We have shown that making
these changes to a distributed relational database (SimSQL) results
in a system for distributed linear algebra whose performance meets
or exceeds special-purpose systems. We believe that our results
call into question the need to build yet another special-purpose
data management system for linear-algebra-based analytics.

In terms of future work, the language and optimization exten-
sions that we proposed do not automatically support chunking or
blocking of very large matrices that cannot be stored in RAM, nor
do they support transparent operations (multiplications, inversions,



etc.) over blocked matrices. Ideally, the decision for when and how
to block should be pushed to to the query optimizer.
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