
Scalable Linear Algebra on a Relational Database System

Shangyu Luo
Rice University

sl45@rice.edu

Zekai J. Gao
Rice University

jacobgao@rice.edu

Michael Gubanov
U. of Texas, San Antonio

mikhail.gubanov@utsa.edu

Luis L. Perez
Rice University

lperezp@gmail.com

Christopher Jermaine
Rice University

cmj4@rice.edu

ABSTRACT
Scalable linear algebra is important for analytics and machine learn-
ing (including deep learning). In this paper, we argue that a paral-
lel or distributed database system is actually an excellent platform
upon which to build such functionality. Most relational systems al-
ready have support for cost-based optimization—which is vital to
scaling linear algebra computations—and it is well-known how to
make relational systems scale. We show that by making just a few
changes to a parallel/distributed relational database system, such
a system can be a competitive platform for scalable linear alge-
bra. Our results suggest that brand new systems supporting scalable
linear algebra are not absolutely necessary, and that such systems
could instead be built on top of existing relational technology.

1. INTRODUCTION
To support machine learning and large-scale statistical process-

ing, a new category of data processing system has appeared: the
scalable linear algebra system. Unlike established, long-lived ef-
forts aimed at building scalable linear algebra APIs (such as ScaLA-
PACK [7]), these newer efforts are targeted more towards building
complete data management systems that support storage/retrieval
of data to/from disk, buffering/caching of data, and automatic log-
ical/physical optimizations of computations (automatic re-writing
of queries, pipelining, etc.). Such systems may also offer some
form of recovery, as well as offering a special-purpose domain-
specific language. For example, SystemML, developed at IBM
[16], as well as RIOT [25] and Cumulon [18] provide scalable lin-
ear algebra capabilities as well as many features borrowed from
data management systems. Big Data systems typically provide lin-
ear algebra APIs (such as Spark’s mllib.linalg [1]). Modern
array database systems such as SciDB [11] also offer direct support
for linear algebra.

Is a New Type of System Actually Necessary? While supporting
scalable linear algebra in the context of a full-fledged data manage-
ment system is clearly a desirable goal, the hypothesis underlying
this paper is that with just a few changes, a classical, parallel re-
lational database is actually an excellent platform for building a
scalable linear algebra system.

In practice, many (or even most) distributed linear algebra com-
putations have closely corresponding, distributed relational alge-
bra computations. Given this, we believe that it is natural to build

c©IEEE 2017. This is a minor revision of the paper entitled “Scal-
able Linear Algebra on a Relational Database System”, published
in the Proceedings of the 2017 ICDE Conference, 2375-026X/17.
DOI: 10.1109/ICDE.2017.108.

distributed linear algebra functionality on top of a distributed rela-
tional database system. Such systems are highly performant, reap-
ing the benefits of decades of research and engineering effort tar-
geted at building efficient systems. Further, relational systems al-
ready have software components such as a cost-based query opti-
mizer to aid in performing efficient computations. In fact, much of
the work that goes into developing a scalable linear algebra system
from the ground up [9] requires implementing functionality that
looks a lot like a database query optimizer [14].

Given that much of the world’s data currently sits in relational
databases, and that dataflow systems increasingly provide at least
some support for relational processing [5, 23], building linear al-
gebra support into relational systems would mean that much of
the world’s data would be sitting in systems capable of performing
scalable linear algebra. This would have several obvious benefits:

1. It would eliminate the “extract-transform-reload nightmare”,
particularly if the goal is performing analytics on data al-
ready stored in a relational system.

2. It would obviate the need for practitioners to adopt yet an-
other type of data processing system in order to perform
mathematical computations.

3. The design and implementation of high-performance distribu-
ted and parallel relational systems is well-understood. If it is
possible to adapt such a system to the task of scalable linear
algebra, most or all of the science and engineering performed
over decades, aimed at determining how to build a distributed
relational system, is directly applicable.

Towards in-database linear algebra. We ask the question:

Can we make a very small set of changes to the relational model
and a RDBMS software to render them suitable for in-database
linear algebra?

The approach we examine is actually simple: we consider adding
new LABELED_SCALAR, VECTOR, and MATRIX data types to an
SQL-based relational system. This facilitates efficient, distributed
linear algebra operations in SQL. Technically, this seems to be a
rather minor change. After all, array has been available as a data
type in most modern DBMSs—arrays can clearly be used to en-
code vectors and matrices—and some database systems (such as
Oracle) offer a form of integration between arrays and linear alge-
bra libraries such as BLAS [8] and LAPACK [4]. However, these
previous, ad-hoc approaches do not offer complete integration with
the database system. The query optimizer, for example, does not
understand the semantics of calls to linear algebra operations, and
this results in lost opportunities for optimization. Thus, we also



consider a small set of changes to a relational query optimizer that
can render it somewhat “linear algebra aware”.

There are clearly drawbacks to our minimalist approach. Com-
pared to systems such as SystemML and Riot, which offer higher-
level, non-SQL programming abstractions, a programmer’s intent
may be obfuscated by using an extended SQL. For example, an op-
timizer implemented by our approach may be unable to optimize
the order of a chain of distributed matrix multiplies expressed in
SQL. Further, a programmer using our extensions to implement
distributed matrix operations must make key choices regarding the
blocking or chunking of the matrices.

Still, we believe that there is utility in the approach. Making
a small set of changes should virtually turn any performant SQL
database into a performant execution engine for linear algebra. If
one desires higher-level programming abstractions, it would be pos-
sible to implement a math-like domain specific language (such as
MATLAB or SystemML’s Python-like language) or API (such as
a TensorFlow-like Python binding [3]) on top of our proposed ex-
tensions. That domain specific language or API could itself exploit
high-level linear algebra transformations, and translate the compu-
tation to a database computation—with the key benefit provided by
a relational backend, there is no need to implement a distributed,
linear algebra execution engine from scratch.

Our contributions. We propose a very small set of changes to SQL
that make it easy for a programmer to specify even complicated
computations over vectors and matrices, and we implement our
ideas in the context of the SimSQL parallel database system [13].
We show experimentally that the resulting system has performance
that is comparable to a special-purpose array system (SciDB), a
special-purpose scalable linear algebra system (SystemML), and
a linear algebra library built directly on top of a dataflow platform
(Spark’s mllib.linalg). Our results prove the suitability of ex-
isting, relational systems for scalable linear algebra computations.

2. LA ON TOP OF RA
We now discuss how a relational database system might make an

excellent platform for distributed linear algebra.

2.1 Linear and Relational Algebra
Development of distributed algorithms for linear algebra has been

an active area of scientific investigation for decades, and many al-
gorithms have become standard. Matrices to be manipulated in a
distributed system are typically “blocked” or “chunked”; that is,
they are divided into smaller matrices. Imagine that we want to
multiply two large, dense matrices on a distributed cluster, to com-
pute O ← L × R. We assume that the blocks of L are randomly
located around the cluster, while the blocks from R are round-robin
partitioned, based upon each block’s row identifier.

As a first step to perform this distributed multiplication, we would
shuffle the blocks from L so that all of the blocks from L, col-
umn i are co-located with all of the blocks from R, row i. Then,
at each node, a local join (in this case, a cross product) is per-
formed to iterate through all (Lj.i, Ri.k) pairs that can be formed
at the node. For each pair, a matrix multiply is performed, so that
Ii.j.k ← Lj.i×Ri.k. Finally, all of the Ii.j.k blocks are again
shuffled so that they are co-located based upon their (j, k) values—
these blocks are then summed, so that the output block is computed
as Oj.k ←

∑
iIi.j.k.

Note that this is really just a relational algebra computation over
the blocks making up L and R. The first two steps of the computa-
tion are a distributed join that computes all (Lj.i, Ri.k) pairs, fol-
lowed by a projection that performs the matrix multiply. The next

two steps—the shuffle and summation—are nothing more than a
distributed grouping with aggregation.

The matrix multiplication example shows that distributed linear
algebra computations are often nothing more than distributed rela-
tional algebra computations. This fact underlies our assertion that
a relational database system makes an excellent platform for dis-
tributed linear algebra. Database researchers have spent decades
studying efficient algorithms for distributed joins and aggregations,
and relational systems are mature and performant. Using a dis-
tributed database means that there is no need to reinvent the wheel.

A further benefit of using a distributed database system as a lin-
ear algebra engine is that decades of work in query optimization
is directly applicable. In our example, we decided to shuffle L
because R was already partitioned on the join key. Had L been pre-
partitioned and not R, it would have been better to shuffle R. This
is exactly the sort of decision that a modern query optimizer makes
with total transparency. Using a database as the basis for a linear
algebra engine gives us the benefit of query optimization for free.

2.2 The Challenges
However, there are two main concerns associated with imple-

menting linear algebra directly on top of an existing relational sys-
tem, without modification. First is the complexity of writing linear
algebra computations on top of SQL. Consider a data set consist-
ing of the vectors {x1, x2, ..., xn}, and imagine that our goal is to
compute the distance

d2A(xi, x′) = (xi − x′)T A(xi − x′)

for a Riemannian metric [19] encoded by the matrix A. We might
wish to compute this distance between a particular data point xi

and every other point x′. This would be required, for example, in a
kNN-based classification in the metric space defined by A.

This can be implemented in SQL as follows. Assume the set of
vectors is encoded as a table:
data (pointID, dimID, value)

with the matrix A encoded as another table:
matrixA (rowID, colID, value)

Then, the desired computation is expressed in SQL as:

CREATE VIEW xDiff (pointID, dimID, value) AS
SELECT x2.pointID, x2.dimID, x1.value - x2.value
FROM data AS x1, data AS x2
WHERE x1.pointID = i and x1.dimID = x2.dimID

SELECT x.pointID, SUM (firstPart.value * x.value)
FROM (SELECT x.pointID AS pointID, a.colID AS

colID, SUM (a.value * x.value) AS value
FROM xDiff AS x, matrixA AS a
WHERE x.dimID = a.rowID
GROUP BY x.pointID, a.colID)
AS firstPart, xDiff AS x

WHERE firstPart.colID = x.dimID
AND firstPart.pointID = x.pointID

GROUP BY x.pointID

While it is clearly possible to write such a code, it is not neces-
sarily a good idea. The first problem is that this is a very intricate
specification, requiring a nested subquery and a view—without the
view it is even more intricate—and it bears little resemblance to the
original, simple mathematics.

The second problem is perhaps less obvious from looking at the
code, but just as severe: performance. This code is likely to be
inefficient to execute, requiring three or four joins and two group-
ings. Even more concerning in practice is the fact that if the data are
dense and the number of data dimensions is large (that is, there are a
lot of dimID values for each pointID), then the execution of this



query will move a huge number of small tuples through the system,
since a million, thousand-dimensional vectors are encoded as a bil-
lion tuples. In the classical, iterator-based execution model, there
is a fixed cost incurred per tuple, which will translate to a very high
execution cost. Vector-based processing can alleviate this some-
what, but the fact remains that satisfactory performance is unlikely.
This fixed-cost-per-tuple problem was often cited as the impetus for
designing new systems, specifically for vector- and matrix-based
processing, or for processing of more general-purpose arrays.

2.3 The Solution
As a solution, we propose a very small set of changes to a typi-

cal relational database system that include adding new LABELED_-
SCALAR, VECTOR, and MATRIX data types to the relational model.
Because these non-normalized data types cause the contents of vec-
tors and matrices to be manipulated as a single unit during query
processing, the simple act of adding these new types brings signifi-
cant performance improvements. It becomes easy to implement lin-
ear algebra computations on top of a database with these changes.

Further, we propose a very small number of SQL language exten-
sions for manipulating these data types and moving between them.
This alleviates the complicated-code problem. In our Riemannian
metric example, the two input tables data and matrixA become
data (pointID, val) and matrixA (val) respectively,
where data.val is a vector, and matrixA.val is a matrix.
The SQL code to compute the pairwise distances becomes:

SELECT x2.pointID,
inner_product (

matrix_vector_multiply (
a.val, x1.val - x2.val),
x1.val - x2.val) AS value

FROM data AS x1, data AS x2, matrixA AS a
WHERE x1.pointID = i

3. OVERVIEW OF EXTENSIONS

3.1 New Types
At the very highest level, we propose adding VECTOR, MATRIX,

and LABELED_SCALAR column types to SQL and the relational
model, as well as a useful set of operations over those types (diag
to extract the diagonal of a matrix, matrix_vector_multiply
to multiply a matrix and a vector, matrix_multiply to multi-
ply two matrices, and so on). Overall, 22 different built-in functions
over LABELED_SCALAR, VECTOR and MATRIX types are present
in our implementation. Each element of a VECTOR or a MATRIX
is a double.

For a simple example of the use of VECTOR and MATRIX types,
consider the following table:

CREATE TABLE m (mat MATRIX[10][10],
vec VECTOR[100]);

This code specifies a relational table, where each tuple in the ta-
ble has two attributes, mat and vec, of types MATRIX and VECTOR
respectively. In our language extensions, VECTORs and MATRIXes
(as above) can have specified sizes, in which case operations such
as matrix_vector_multiply are automatically type-checked
for size mismatches. For example, the following query:

SELECT matrix_vector_multiply (m.mat, m.vec)
AS res

FROM m

will not compile because the number of columns in m.mat does
not match the number of entries in m.vec. However, if the original
table declaration had been:

CREATE TABLE m (mat MATRIX[10][10],
vec VECTOR[10]);

then the aforementioned SQL query would compile and execute,
and the output would be a database table with a single attribute
(called res) of type VECTOR[10].

Note that in our extensions, there is no distinction between row
and column vectors; whether or not a vector is a row or a col-
umn vector is up to the interpretation of each individual opera-
tion. matrix_vector_multiply interprets a vector as be-
ing a column vector, for example. To perform a matrix-vector
multiplication treating the vector as a row vector, a programmer
would first transform the vector into a one-row matrix (this trans-
formation is described in the subsequent subsection) and then call
matrix_multiply. Or, a programmer could transform the ma-
trix first, then apply the matrix_vector_multiply function.

It is possible to create MATRIX and VECTOR types where the
sizes are unspecified:

CREATE TABLE m (mat MATRIX[10][10],
vec VECTOR[]);

In this case, the aforementioned matrix_vector_multiply
SQL query would compile, but there could possibly be a runtime
error if one or more of the tuples in m contained a vec attribute that
did not have 10 entries.

It is also possible to have a MATRIX declaration where only one
of the dimensionalities is given; for example, MATRIX[10][] is
acceptable. However, if dimensions are known, it can help the op-
timization process because the optimizer is aware of the sizes of
intermediate results.

3.2 Built-In Operations
In addition to a long list of standard linear algebra operations,

the standard arithmetic operations +, -, * and / (element-wise) are
also defined over MATRIX and VECTOR types. For example:

CREATE TABLE m (mat MATRIX[100][10]);

SELECT mat * mat
FROM m

returns a database table which stores the Hadamard product of each
matrix in m with itself.

Since the standard arithmetic operations are all overloaded to
work with MATRIX and VECTOR types, it means that the standard
SQL aggregate operations all work as expected automatically. The
SUM aggregate over MATRIX type attribute, for example, performs
a + (entry-by-entry addition) over each MATRIX in a relation. This
can be very convenient for implementing mathematical computa-
tions. For example, imagine that we have a matrix stored as a re-
lational table of vectors, and we wish to perform a standard Gram
matrix computation (if the matrix X is stored as a set of columns
X = {x1, x2, ..., xn}, then the gram matrix of X is

∑n
i=1 xixT

i ).
This computation can be implemented simply as:

CREATE TABLE v (vec VECTOR[]);

SELECT SUM (outer_product (vec, vec))
FROM v

Arithmetic between a scalar value and a MATRIX or VECTOR
type performs the arithmetic operation between the scalar and ev-
ery entry in the MATRIX or VECTOR. In this way, it becomes
very easy to specify linear algebra computations of significant com-
plexity using just a few lines of code. For example, consider the
problem of learning a linear regression model. Given a matrix
X = {x1, x2, ..., xn} and a set of outcomes {y1, y2, ..., yn}, the
goal is to estimate a vector β̂ββ where for each i, xiβ̂ββ ≈ yi. In prac-



tice, β̂ββ is typically computed so as to minimize the squared loss∑
i(xiβ̂ββ − yi)2. In this case, the formula for β̂ββ is given as:

β̂ββ =

(∑
i

xixT
i

)−1(∑
i

xiyi

)
This can be coded as follows. If we have:
CREATE TABLE X (i INTEGER, x_i VECTOR []);
CREATE TABLE y (i INTEGER, y_i DOUBLE);

then the SQL code to compute β̂ββ is:

SELECT matrix_vector_multiply (
matrix_inverse (

SUM (outer_product (X.x_i, X.x_i))),
SUM (X.x_i * y_i))

FROM X, y
WHERE X.i = y.i

Note the multiplication X.x_i * y_i between the vector X.x_i
and the scalar y_i, which multiplies y_i by each entry in X.x_i.

3.3 Moving Between Types
By introducing MATRIX and VECTOR types, we then have new,

de-normalized alternatives for storing data. For example, a matrix
can be stored as a traditional triple-entry relation:

mat (row INTEGER, col INTEGER, value DOUBLE)

or as a relation containing a set of row vectors, or as a set of column
vectors using

row_mat (row INTEGER, vec_value VECTOR[])

or
col_mat (col INTEGER, vec_value VECTOR[])

Or, the matrix can be stored as a relation with a single tuple having
the whole matrix:
mat (value MATRIX [][])

It is of fundamental importance to be able to move around be-
tween these various representations, for several reasons. Most im-
portantly, each has its own performance characteristics and ease-
of-use for various tasks; depending upon a particular computation,
one may be preferred over another.

Reconsider the linear regression example. Had we stored the
data as:
CREATE TABLE X (mat MATRIX [][]);
CREATE TABLE y (vec VECTOR []);

then the SQL code to compute β̂ββ would have been:

SELECT matrix_vector_multiply (
matrix_inverse (
matrix_multiply (trans_matrix (mat), mat)),

matrix_vector_multiply (
trans_matrix (mat), vec))

FROM X, y

Arguably, this is a more straightforward translation of the mathe-
matics compared to the code that stores X as a set of vectors. How-
ever, it may not perform as well because it may be more difficult
to parallelize on a shared-nothing cluster of machines. In compar-
ison to the vector-based implementation, the matrix multiply XT X
is implicit in the relational algebra.

Since different representations are going to have their own mer-
its, it may be necessary to construct (or deconstruct) MATRIX and
VECTOR types using SQL. To facilitate this, we introduce the no-
tion of a label. In our extension, each VECTOR attribute implic-
itly or explicitly has an integer label value attached to it (if the
label is never explicitly set for a particular vector, then its value

is −1 by default). In addition, we introduce a new type called
LABELED_SCALAR, which is essentially a DOUBLE with a la-
bel. Using those labels along with three special aggregate functions
(ROWMATRIX, COLMATRIX, and VECTORIZE), it is possible to
write SQL code that creates MATRIX types and VECTOR types,
respectively, from normalized data.

For example, reconsider the table:

CREATE TABLE y (i INTEGER, y_i DOUBLE);

Imagine that we want to create a table with a single vector tuple
from the table y. To do this, we simply write:

SELECT VECTORIZE (label_scalar (y_i, i))
FROM y

Here, the label_scalar function creates an attribute of type
LABELED_SCALAR, attaching the label i to the DOUBLE y_i.
Then, the VECTORIZE operation aggregates the resulting values
into a vector, adding each LABELED_SCALAR value to the vector
at the position indicated by the label. Any “holes” (or entries in
the vector for which no LABELED_SCALAR were found) in the
resulting vector are set to zero. The number of entries in the vector
is set to be equal to the largest label of any entry in the vector.

As stated above, VECTOR attributes implicitly have labels, but
they can be set explicitly as well, and those labels can be used to
construct matrices. For example, imagine that we want to create a
single tuple with a single matrix from the table:

mat (row INTEGER, col INTEGER, value DOUBLE)

We can do this with the following SQL code:

CREATE VIEW vecs AS
SELECT VECTORIZE (label_scalar (val, col))

AS vec, row
FROM mat
GROUP BY row

followed by:

SELECT ROWMATRIX (label_vector (vec, row))
FROM vecs

The first bit of code creates one vector for each row, and the
second bit of code aggregates those vectors into a matrix, using
each vector as a row. It would have been possible to create a col-
umn matrix by first using a GROUP BY col and then SELECT
COLMATRIX.

So far we have discussed how to de-normalize relations into vec-
tors and matrices. It is equally easy to normalize MATRIX and
VECTOR types. Assuming the existence of a table label (id)
which simply lists the values 1, 2, 3, and so on, then one can move
from the vectorized representation to a purely-relational represen-
tation using a join of the form:

SELECT label.id, get_scalar (vecs.vec, label.id)
FROM vecs, label

Code to normalize a matrix is written similarly.

3.4 Local Matrix vs. Distributed Matrix
In keeping with a traditional RDBMS design, our system en-

forces that all vectors and matrices should be small enough to fit
into the RAM of an individual machine. Since our mantra is “in-
cremental, not revolutionary,” and distributing individual tuples or
attributes across machines is generally not supported by modern
database systems, it seems reasonable not to support distributed
vector/matrix data types in our system.

Of course, one might ask, What if one has a matrix that is too
large to fit into the RAM of an individual machine? Fortunately, it
turns out that our extension can handle this easily and efficiently.



For example, a large, dense matrix with 100,000 rows and 100,000
columns can be stored as one hundred tuples in the table:

bigMatrix (tileRow INTEGER, tileCol INTEGER,
mat MATRIX[10000][10000])

Efficient, distributed matrix operations are then easily possible via
SQL. For example, to multiply bigMatrixwith anotherBigMat
(tileRow, tileCol, mat), we would use:
SELECT lhs.tileRow, rhs.tileCol,
SUM (matrix_multiply (lhs.mat, rhs.mat))

FROM bigMatrix AS lhs, anotherBigMat AS rhs
WHERE lhs.tileCol = rhs.tileRow
GROUP BY lhs.tileRow, rhs.tileCol

4. TYPING AND OPTIMIZATION

4.1 Vector and Matrix Sizes
In practical applications, the individual matrices stored in a database

table can range from a few bytes in size to many gigabytes in
size. Hence, knowing the size of an individual linear algebra object
stored in a database is going to be of fundamental importance dur-
ing query optimization. Unfortunately, linear algebra objects are
typically manipulated via a large set of user-defined and system-
provided functions that change the sizes of the objects being ma-
nipulated in ways that are regular, but opaque to the system. This
can easily result in the choice of a query plan that is far from opti-
mal.

The problem can be illustrated by a simple example. Assume we
have three tables defined as below:
R (r_rid INTEGER, r_matrix MATRIX[10][100000])
S (s_sid INTEGER, s_matrix MATRIX[100000][100])
T (t_rid INTEGER, t_sid INTEGER)

Imagine that the sizes of the tables R, S, and T are 100 tuples, 100
tuples, and 1,000 tuples, respectively. Now, suppose we want to
calculate the product of a number of pairs of matrices from the
relations R and S, where the pairs for which we need to obtain are
indicated by T:

SELECT matrix_multiply (r_matrix, s_matrix)
FROM R, S, T
WHERE r_rid = t_rid AND s_sid = t_sid

A rule-based optimizer, or a cost-based optimizer without access
to good information about the size of the linear algebra object be-
ing pushed through the system is almost assuredly going to choose
a plan such as π((S 1 T) 1 R) where the projection π contains
the matrix multiply. It will not join R and S first because no join
predicate links them. In this plan, the join between tables S and T
produces about 1,000 tuples (estimated as 1000×100

100
), each contain-

ing an 80MB matrix (estimated as 8× 100000× 100 bytes). Thus,
the total data produced in this join is about 80 GB.

However, this is clearly not the optimal query plan. It is possible
to do a lot better using the plan (π(S× R)) 1 T, where the projec-
tion π again contains the matrix multiply. While the cross product
between the tables S and R produces 10,000 tuples, the early pro-
jection allows the optimizer to produce a plan that performs the
matrix_multiply (r_matrix, s_matrix) early, to ef-
fectively remove all of the large matrices from the plan; the result
of each matrix multiply is only 8KB (estimated as 8 × 10 × 100
bytes). Thus, the total data produced in this join and projection is
about 80 MB, and it is likely far superior.

4.2 Type Signatures
To make sure that the database optimizer has the information

necessary to choose the correct plan, the type signature for any

function that includes vectors and matrices is templated. The type
signature takes (as an argument) the size and shape of the input, and
returns the size and shape of the output. For example, the function
signature of the built-in function diag (computing the diagonal of
a matrix) is:
diag(MATRIX[a][a]) -> VECTOR[a]

This signature constrains the input matrix to be square, and it in-
dicates that the output vector has a number of entries identical to
the number of rows/columns of the input matrix. The signature for
matrix_multiply is:
matrix_multiply(MATRIX[a][b], MATRIX[b][c]) ->

MATRIX[a][c]

In this signature, the arguments a, b, and c effectively parameter-
ize the function signature. This information is then used by the
optimizer to infer the exact dimensions of the output object. For
example, consider the schema:

U (u_matrix MATRIX[1000][100])
V (v_matrix MATRIX[100][10000])

And the query:

SELECT matrix_multiply(u_matrix, v_matrix)
FROM U, V

The optimizer obtains the dimensions of the u_matrix and v_mat-
rix objects by looking in the catalog. When the dimensions of
u_matrix are retrieved from the catalog, the type parameter a is
bound to 1000, and b is bound to 100. When the dimensions of
v_matrix are retrieved, b is bound a second time to 100 (a dif-
ferent value for bwould cause a compile-time error) and c is bound
to 10000. Hence, the output of the matrix multiply is a 1000-by-
10000 matrix of approximately 80 MB in size; this information can
subsequently be used by the optimizer.

5. EXPERIMENTS
We have implemented all of the capabilities described in the pa-

per on top of SimSQL [13], a prototype Java- and Hadoop-based
database designed for scalable analytics. In this section, we exper-
imentally evaluate the utility of the new capabilities by comparing
SimSQL to a number of alternative platforms.

Platforms Tested. The platforms we evaluated are:

(1) SimSQL. We tested several different SimSQL implementations:
Without vector/matrix support (the original SimSQL implementa-
tion, without the improvements proposed in this paper), with data
stored as vectors, and with data stored as vectors, then converted
into blocks.

(2) SystemML. This is SystemML V0.9, which provides the option
to run on top of Hadoop. All computations are written in Sys-
temML’s DML programming language.

(3) SciDB. This is SciDB V14.8. All computations are written in
SciDB’s AQL language which is similar to SQL.

(4) Spark mllib.linalg. This is run on Spark V1.6 in stan-
dalone mode. All computations are written in Scala.

Computations Performed. In our experiments, we performed three
different representative computations.

(1) Gram matrix computation. A Gram matrix is the inner products
of a set of vectors. It is a common computational pattern in machine
learning, and is often used to compute the kernel functions and
covariance matrices. If we use a matrix X to store the input vectors,
then the Gram matrix G can be calculated as G = XT X.



(2) Least squares linear regression. Given a paired data set {yi, xi},
i = 1, . . . , n, we wish to model each yi as a linear combination of
the values in xi. Let yi ≈ xT

i βββ + εi, where βββ is the vector of re-
gression coefficients. The most common estimator forβββ is the least
squares estimator: β̂ββ = (XT X)−1XT y.

(3) Distance computation. We first compute the distance between
each data point pair xi and x′: d2A(xi, x′) = xT

i Ax′. Then, for each
data point xi, we compute the minimum d2A(xi, x′) value over all
x′ 6= xi. Lastly, we select the data points which have the max value
among those minimums.

Implementation Details. We now describe in some detail how
we performed each of these three computations over the various
platforms.

(1) SimSQL. A SimSQL programmer uses queries and built-in func-
tions to conduct computations. In SimSQL, we implemented each
model using three different SQL codes. First, we wrote a pure-
tuple based code (as on an existing, standard SQL-based platform).
Second, we wrote an SQL code where each data point is stored as
an individual vector, in the schema:
x_vm (id INTEGER, value VECTOR[])

Third, we wrote an SQL code where data points are grouped to-
gether in blocks of 1000 data points, and stored as a matrix with
1000 rows, so that they can be manipulated as a group.

The Gram matrix computation is written over tuples as:

SELECT x1.col_index, x2.col_index,
SUM(x1.value * x2.value)

FROM x AS x1, x AS x2
WHERE x1.row_index = x2.row_index
GROUP BY x1.col_index, x2.col_index;

The Gram matrix is computed over vectors as:

SELECT SUM(outer_product(x.value, x.value))
FROM x_vm AS x;

For a block-based computation, the rows are first grouped into blocks
(the table block_index (mi INTEGER) stores the indices for
blocks):
CREATE VIEW MLX (m) AS
SELECT ROWMATRIX(label_vector(

x.value, x.id - ind.mi*1000))
FROM x_vm AS x, block_index AS ind
WHERE x.id/1000 = ind.mi
GROUP BY ind.mi;

Note that this grouping step is not necessary if the data are already
stored as blocks; in our experiments, we count the blocking time as
part of the computation.

Then, the result is a sum of a series of matrix multiplies:

SELECT SUM(matrix_multiply(
trans_matrix(mlx.m), mlx.m))

FROM mlx;

The calculation of linear regression is similar to Gram matrix
computation. We omit the code for brevity. We also omit the code
for tuple-based distance computation.

The key codes of vector-based and block-based distance com-
putation are given below. For the vector-based computation, we
calculate the minimum d2A(xi, x′) for each data point xi as (the table
MX stores the distances computed by another query):

CREATE VIEW DISTANCESM (id, dist) AS
SELECT a.dataID,

MIN (inner_product (mxx.mx_data, a.data))
FROM X_m AS a, MX AS mxx
WHERE a.dataID <> mxx.id
GROUP BY a.dataID;

And in the block-based computation, we first conduct the compu-
tation xT

i Ax′ via a set of matrix multiplies:

CREATE VIEW DISTANCES (id1, id2, dm) AS
SELECT mxx.id, mx.id, matrix_multiply(
mxx.m, matrix_multiply(mp.mapping,
trans_matrix(mx.m)))

FROM MLX AS mx, MLX AS mxx, MM AS mp;

Then, the minimum values of those computations for each data
point is calculated via a series of operations on matrices.

(2) SystemML. Physically, the data in SystemML are stored and
processed as blocks, which are square matrices.

Gram matrix computation in SystemML is:

result = t(X) %*% X

Linear regression is omitted. The code of distance computation is:

all_dist = X %*% m %*% X_t
all_dist = all_dist + diag(diag_inf)
min_dist = rowMins(all_dist)
result = rowIndexMax(t(min_dist))

(3) Spark mllib.linalg. A Spark mllib.linalg program-
mer must decide: should the input data be stored/processed as vec-
tors, or as matrices? And, if a matrix is used, should it be a local
matrix, or a distributed one? In our experiments, we tried differ-
ent vector/local matrix/distributed matrix implementations, and se-
lected the most efficient ones.

For Gram matrix computation, vector-based is the fastest:

val result = parsedData.map(
x => x.transpose.multiply(

x.asInstanceOf[DenseMatrix]
).toArray

).reduce((a, b) => (a, b).zipped.map(_+_))

For linear regression, vector-based is also the most efficient. We
omit the code for brevity.

The distance computation was challenging. After a lot of exper-
imentation, we found that the distributed BlockMatrix was the
best. The code is as follows:
val dist_matrix = block_matrix_x.

multiply(block_matrix_m).
multiply(block_matrix_x.transpose)

val result =
dist_matrix.toIndexedRowMatrix.rows.map(
x => (x.index, x.vector.toArray)).
map{ case(i, a) =>

{if (i==0) a(0)=a(1)
else a(i.toInt)=a(0); (i, a.min);}

}.max()(
new Ordering[Tuple2[Long, Double]]() {
override def compare(
x: (Long, Double), y: (Long, Double)

): Int =
Ordering[Double].compare(x._2, y._2)})

(4) SciDB. Data in SciDB are partitioned as chunks. We use 1000
as the chunk size for all arrays in our code.

The SciDB code of Gram matrix computation is:

SELECT * FROM gemm(transpose(x), x,
build(<val:double>[t1=0:9,1000,0,

t2=0:9,1000,0], 0));

Linear regression is similar. The implementation of the distance
computation is:



Gram Matrix Computation
Platform 10 dims 100 dims 1000 dims

Tuple SimSQL 00:01:28 00:03:19 05:04:45
Vector SimSQL 00:00:37 00:00:43 00:05:43
Block SimSQL 00:01:18 00:01:23 00:02:53

SystemML 00:00:05∗ 00:00:51 00:02:34
Spark mllib 00:00:20 00:00:54 00:17:31

SciDB 00:00:03 00:00:17 00:03:20

Figure 1: Gram matrix results. Format is HH:MM:SS. A star (∗)
indicates running in local mode.

SELECT * INTO mxt
FROM gemm(m, transpose(x),

build(<val:double>[t1=0:999,1000,0,
t2=0:99999,1000,0], 0));

SELECT * INTO all_distance
FROM filter(gemm(x, mxt,

build(<val:double>[t1=0:99999,1000,0,
t2=0:99999,1000,0], 0)), t1<>t2);

SELECT min(gemm) INTO distance
FROM all_distance
GROUP BY t1;

SELECT * INTO max_dist
FROM (SELECT max(min) FROM distance);

SELECT t1
FROM distance JOIN max_dist ON

distance.min = max_dist.max;

Experiment Setup. We ran all experiments on 10 Amazon EC2
m2.4xlarge machines (as workers), each having eight CPU cores.
For Gram matrix computation and linear regression, the number of
data points per machine was 105. For the distance computation,
the number of data points per machine was 104. All data sets were
dense, and all data were synthetic—since we are only interested in
running time; there is likely no practical difference between syn-
thetic and real data. For each computational task, we considered
three data dimensionalities: 10, 100, and 1000.

Experiment Results and Discussion. The results are shown in
Figures 1, 2, and 3.

Vector- and block-based SimSQL clearly dominate the tuple-
based implementation for each of the three computations. To exam-
ine this further, we re-ran the tuple-based and vector-based Gram
matrix computations over 1000-dimensional data on a five machine
cluster, and timed the individual operations that made up the com-
putation (shown in Figure 4). Note that in the 1000-dimensional
computation, in the tuple-based computation, each tuple joins with
the other 1000 values making up the same data point, and all of
those tuples need to be aggregated. Since 5 × 105 data points are
stored as 5 × 108 tuples, this results in 5 × 1011 tuples that need
to be aggregated. Even though these operations are pipelined, they
dominate the running time, as shown in Figure 4. Here we see—
perhaps surprisingly—that the the dominant cost is not the join
in the tuple-based computation, but the aggregation. This il-
lustrates the problem with tuple-based linear algebra: even a tiny
fixed cost associated with each tuple is magnified when we must
push 5× 1011 tuples through the system.

Interestingly, we see that the vector-based computation was faster
than block-based for 10- and 100-dimensional computations. This
is because our experiments counted the time of grouping vectors
into blocked matrices. This additional computation was not worth-
while for less computationally expensive problems. But for the

Linear Regression
Platform 10 dims 100 dims 1000 dims

Tuple SimSQL 00:03:42 00:05:46 05:05:22
Vector SimSQL 00:00:45 00:00:49 00:06:35
Block SimSQL 00:02:23 00:02:22 00:04:22

SystemML 00:00:06∗ 00:00:53 00:02:38
Spark mllib 00:00:35 00:01:01 00:17:42

SciDB 00:00:15 00:00:33 00:06:04

Figure 2: Linear regression results. Format is HH:MM:SS. A star
(∗) indicates running in local mode.

Distance Computation
Platform 10 dims 100 dims 1000 dims

Tuple SimSQL Fail Fail Fail
Vector SimSQL 00:10:14 00:11:49 00:13:53
Block SimSQL 00:03:14 00:04:43 00:10:36

SystemML 00:13:29 00:22:38 00:33:22
Spark mllib 01:22:59 01:15:06 01:13:06

SciDB 00:03:46 00:04:54 00:05:06

Figure 3: Distance computation results. Format is HH:MM:SS.

1000-dimensional computations, additional time savings could be
realized via blocking.

For the higher-dimensional computations, there was no clear win-
ner among SystemML, SciDB, and SimSQL. SimSQL was a bit
slower for the lower-dimensional problems, because, as a prototype
system, it is not engineered for high throughput. Spark mllib was
not competitive on the higher-dimensional data. Over the three,
1000-dimensional computations, SimSQL, SystemML, and SciDB
had geometric mean running times of 5 minutes 7 seconds, 6 min-
utes 5 seconds, and 4 minutes 41 seconds, respectively.

We spent a lot of time trying to tune both SimSQL and Sys-
temML for the distance computation. In the case of SimSQL, the
problem appears to be that there are only 105 data points in all;
when grouped into blocks of 1000 vectors, this results in only 100
matrices in all. This meant that each of our 80 compute cores had
an average of 1.25 matrices mapped to it. Since SimSQL uses a
randomized, hash-based partitioning, it is easily possible for one
core to receive four or five of the 100 matrices. We did observe that
most cores would finish in a short time, while just a few, overloaded
cores would be left to finish the computation in a much longer pe-
riod. Better load balancing would likely have solved this problem.

Finally, we ask the question: do these experiments support the
hypothesis at the core of the paper, that a relational engine can be
used with little modification to support efficient linear algebra pro-
cessing? In terms of performance, they seem to. Enhancing a rel-
atively slow, Java-based system (SimSQL) resulted in a relational
algebra system with very reasonable performance for linear algebra
computations.

6. RELATED WORK
There has been some recent interest in combining distributed/-

parallel data management systems and linear algebra to support an-
alytics. One approach is the construction of a special purpose data
management system for scalable linear algebra; SystemML [16] is
the best example of this. Another good example of this is the Cu-
mulon system [18], which has the notable capability of optimizing
its own hardware settings in the cloud. MadLINQ [21], built on top
of Microsoft’s LINQ framework, can also be seen as an example of
this. Other work aims at scaling statistical/numerical programming
languages such as R. Ricardo [15] aims to support R programming
on top of Hadoop. Riot [25] attempts to plug an I/O efficient back-



Figure 4: Comparison of Gram matrix computation for tuple-based
and vector-based SimSQL.
end into R to bring scalability.

A second (and not completely distinct) approach is building scal-
able linear algebra libraries on top of a dataflow platform. In this
paper, we have experimentally considered mllib.linalg [1].
Apache Hama [22] is another example of such a package. So is
SciHadoop [12].

The idea of moving past relations onto arrays as a database data
model, particularly for scientific and/or numerical applications, has
been around for a long time. One of the most notable efforts is
Baumann and his colleague’s work on Rasdaman [6]. In this paper,
we have compared with SciDB [11], an array database for which
linear algebra is a primary use case.

An array-based approach that is somewhat related to what we
have proposed is SciQL [24], which is a system supporting an ex-
tended SQL that is implemented on top of the MonetDB system
[10]. SciQL adds arrays (in addition to tables) as a second data
storage abstraction. Our proposed approach is much more modest;
rather than allowing arrays as a fundamental data abstraction, we
simply add vectors and matrices as new attribute types.

There is some support for linear algebra in modern, commercial
relational database systems, but it is not well-integrated into the
declarative (SELECT-FROM-WHERE) portion of SQL, and gener-
ally challenging to use. For example, Oracle provides the UTL_NLA
[2] package to support BLAS and LAPACK operations. To multi-
ply two matrices using this package, and assuming two input matri-
ces m1 and m2 declared as type utl_nla_array_dbl (and an
output matrix res defined similarly), a programmer would write:

utl nla.blas_gemm(
transa => ’N’, transb => ’N’, m => 3, n => 3,
k => 3, alpha => 1.0, a => m1, lda => 3,
b => m2, ldb => 2, beta => 0.0, c => res,
ldc => 3, pack => R);

There have been efforts [17, 20] aimed at building analytics li-
braries, including linear algebra functionality, on top of a database
system. However, these efforts use (external) tools such as user de-
fined functions to build linear algebra on top of a database system.

7. CONCLUSIONS
We have proposed a small set of changes to SQL that can ren-

der any distributed, relational database engine a high-performance
platform for distributed linear algebra. We have shown that making
these changes to a distributed relational database (SimSQL) results
in a system for distributed linear algebra whose performance meets
or exceeds special-purpose systems. Given that SimSQL is a proto-
type system written mostly in Java, it is not unreasonable to spec-
ulate that a commercial, high-performance database system with
similar extensions could do even better. We believe that our results

call into question the need to build yet another special-purpose data
management system for linear-algebra-based analytics.

Acknowledgments. Material in this paper has been supported by
the NSF under grant nos. 1355998 and 1409543, and by the DARPA
MUSE program.

8. REFERENCES
[1] Apache spark mllib: http://spark.apache.org/docs/lat-

est/mllib-data-types.html.
[2] Oracle corporation:

https://docs.oracle.com/cd/B19306_01/index.htm.
[3] M. Abadi et al. Tensorflow: Large-scale machine learning on heterogeneous

systems, 2015. Software available from tensorflow.org.
[4] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Dongarra, J. Du Croz,

A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen. LAPACK
Users’ guide, volume 9. Siam, 1999.

[5] M. Armbrust, R. S. Xin, C. Lian, Y. Huai, D. Liu, J. K. Bradley, X. Meng,
T. Kaftan, M. J. Franklin, A. Ghodsi, et al. Spark sql: Relational data
processing in spark. In SIGMOD, pages 1383–1394. ACM, 2015.

[6] P. Baumann, A. Dehmel, P. Furtado, R. Ritsch, and N. Widmann. The
multidimensional database system rasdaman. In SIGMOD Record, volume 27,
pages 575–577. ACM, 1998.

[7] L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel, I. Dhillon,
J. Dongarra, S. Hammarling, G. Henry, A. Petitet, et al. ScaLAPACK users’
guide, volume 4. siam, 1997.

[8] L. S. Blackford, A. Petitet, R. Pozo, K. Remington, R. C. Whaley, J. Demmel,
J. Dongarra, I. Duff, S. Hammarling, G. Henry, et al. An updated set of basic
linear algebra subprograms (blas). ACM TOMS, 28(2):135–151, 2002.

[9] M. Boehm, D. R. Burdick, A. V. Evfimievski, B. Reinwald, F. R. Reiss, P. Sen,
S. Tatikonda, and Y. Tian. Systemml’s optimizer: Plan generation for large-scale
machine learning programs. IEEE Data Eng. Bull., 37(3):52–62, 2014.

[10] P. A. Boncz, M. Zukowski, and N. Nes. Monetdb/x100: Hyper-pipelining query
execution. In CIDR, volume 5, pages 225–237, 2005.

[11] P. G. Brown. Overview of SciDB: large scale array storage, processing and
analysis. In SIGMOD, pages 963–968, 2010.

[12] J. B. Buck, N. Watkins, J. LeFevre, K. Ioannidou, C. Maltzahn, N. Polyzotis,
and S. Brandt. SciHadoop: Array-based query processing in Hadoop. In ACM
SC, page 66, 2011.

[13] Z. Cai, Z. Vagena, L. L. Perez, S. Arumugam, P. J. Haas, and C. Jermaine.
Simulation of database-valued Markov chains using SimSQL. In SIGMOD,
pages 637–648, 2013.

[14] S. Chaudhuri. An overview of query optimization in relational systems. In
PODS, pages 34–43. ACM, 1998.

[15] S. Das, Y. Sismanis, K. S. Beyer, R. Gemulla, P. J. Haas, and J. McPherson.
Ricardo: integrating R and Hadoop. In SIGMOD, pages 987–998, 2010.

[16] A. Ghoting, R. Krishnamurthy, E. Pednault, B. Reinwald, V. Sindhwani,
S. Tatikonda, Y. Tian, and S. Vaithyanathan. SystemML: Declarative machine
learning on mapreduce. In ICDE, pages 231–242, 2011.

[17] J. M. Hellerstein, C. Ré, F. Schoppmann, D. Z. Wang, E. Fratkin, A. Gorajek,
K. S. Ng, C. Welton, X. Feng, K. Li, et al. The MADlib analytics library: or
MAD skills, the SQL. VLDB, 5(12):1700–1711, 2012.

[18] B. Huang, S. Babu, and J. Yang. Cumulon: Optimizing statistical data analysis
in the cloud. In SIGMOD, pages 1–12, 2013.

[19] G. Lebanon. Metric learning for text documents. IEEE PAMI, 28(4):497–508,
2006.

[20] C. Ordonez. Statistical model computation with udfs. IEEE TKDE,
22(12):1752–1765, 2010.

[21] Z. Qian, X. Chen, N. Kang, M. Chen, Y. Yu, T. Moscibroda, and Z. Zhang.
Madlinq: large-scale distributed matrix computation for the cloud. In EuroSys,
pages 197–210. ACM, 2012.

[22] S. Seo, E. J. Yoon, J. Kim, S. Jin, J.-S. Kim, and S. Maeng. Hama: An efficient
matrix computation with the mapreduce framework. In CloudCom, pages
721–726. IEEE, 2010.

[23] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, S. Anthony, H. Liu,
P. Wyckoff, and R. Murthy. Hive: a warehousing solution over a map-reduce
framework. VLDB, 2(2):1626–1629, 2009.

[24] Y. Zhang, M. Kersten, and S. Manegold. Sciql: array data processing inside an
rdbms. In SIGMOD, pages 1049–1052. ACM, 2013.

[25] Y. Zhang, W. Zhang, and J. Yang. I/o-efficient statistical computing with riot. In
ICDE, pages 1157–1160. IEEE, 2010.


