
Hybrid.Poly: Performance Evaluation of Linear Algebra Analytical Extensions

Maksim Podkorytov, Michael Gubanov
Department of Computer Science

Florida State University

Abstract—Anecdotal evidence suggests that Variety is one
of the most challenging problems in Big data research [1].
Different data providers use different data models and formats
to represent their data, which causes significant impediment to
data scientists, whose goal is to make sense of all relevant data
regardless of the source. Hybrid.Poly [2], [3] is the analytical
polystore data management system designed to make all data
accessible to the analyst, oblivious of the source differences.

In this paper, we focus on the in-depth analysis and perfor-
mance evaluation of the Linear Algebra extensions added to
the Hybrid.Poly language.

Keywords-Linear Algebra; Large-scale Data Management.

I. INTRODUCTION

Proliferation of different data models and large-scale
data management systems [4], [5], [6], [7], [8], [9], [1]
complicate access to Big data coming from many sources
in many shapes and flavors. Because of that it is sometimes
called Dark Data [10], [11], [12], [2], [13], [14], [15], [16],
[17], [3], [18], [19], [20], [21], [22] to reflect difficulties of
getting insight into it. Hence, not only accessing, but also
supporting any simple or complex analytical algorithms on
top of Dark Data is also problematic.

Here we focus on performance evaluation of Linear Alge-
bra operators of Hybrid.poly, an analytical polystore system.
First, we briefly describe selected SQL language extensions,
then switch to analysis of internals of in-memory algorithms,
implementing these operators, finally describe experimental
evaluation and related work.

II. ARCHITECTURE

A. Query language

In Hybrid.Poly language [2], [3], it is possible to store and
query vectors and matrices as first-class objects. Without
these new data types, we would have had to resort to
inefficient workarounds and convert these abstractions to
relational equivalent and back, as demonstrated below.

First, we store vectors as attributes of a new type vector of
a regular relational table. Second, we embed several linear
algebra operations into our hybrid linear-relational query
language to simplify implementation of both in-database
relational and linear-algebra workloads. For instance, let us
consider computing a dot product of 2 vectors. In our hybrid
SQL, the query looks very natural and concise:

SELECT id, vector1.dot(vector2) FROM
VectorStorage

In standard SQL, it is also possible, but using a much
more inefficient and more complex query with a GROUP BY
and JOIN. Before that even is possible, the vectors should be
converted to their relational equivalent (i.e. value1, value2
that are their euclidean coordinates in the query below).

SELECT id, SUM(value1 * value2) FROM
RelVecStore

WHERE index1 = index2 GROUP BY id

B. Matrix multiplication internals

The matrix multiply operator multiplies 2 matrices. Let
A be a x-by-y matrix, B be an y-by-z matrix, then their
product A ·B = C is a x-by-z matrix with elements defined
as follows: C(i, j) = sum(A(i, k) · B(k, j)), 1 ≤ k ≤ y.
Numerically, this operator is implemented using a so-called
IKJ scheme that is often used to multiply dense matrices.
The implementation is a 3-level for-loop:

1 initialize C with zeros
2 for i: a matrix A row number (and the same

row number in the result matrix C)
3 for k: a matrix B row number (and a

column number in matrix A)
4 for j: a matrix B column number (and

the same column number in matrix C)
5 C(i,j) += A(i,k) * B(k,j)
6 return C

The theoretical time complexity of calculating this product
is O(xyz); if x = y = z, that is, the input matrices are
square ones, the theoretical time complexity is O(x3). The
experimental complexity is lower due to caching, refer to
the evaluation section for explanation.

Each matrix is stored in a flat array of doubles in a row-
major order, i.e. the elements of the first matrix row are
stored in the beginning of the array; then the elements of
the second row are stored, and so on. Thus, the element
A(i, j) of x-by-y matrix A is stored in the position i∗y+j.
In order to efficiently use the modern processor architecture,
in particular, multiple cache levels, it is necessary to read
and write the data exhibiting both spatial and temporal
locality, that is, the adjacent elements of the data array must
be read or written within a relatively small time duration.
Hence the structure of the aforementioned IKJ scheme. In
the innermost for-loop, A(i, k) is effectively constant, and
the k-th row of matrix B is multiplied by the constant
coefficient and added to i-th row of the result matrix C.



Moreover, the i-th row of matrix C stays in cache for a
long time due to i being the index of the outer for-loop.

The aforementioned storage scheme may be improved
further by splitting matrices into logical tiles. A tiled matrix
is a matrix of matrices, that is, a two-dimensional array
where each element of the array is a matrix. Any arithmetic
operation on matrices, such as addition, subtraction, multi-
plication and Moore-Penrose pseudoinverse, needs to be im-
plemented in terms of operations on the constituent blocks.
As a byproduct of such matrix partitioning, it is possible to
partition a large matrix across several computational nodes.

C. Matrix-vector multiplication internals

The multVectorL operator multiplies a matrix by a vector.
Let M be an x-by-y matrix, v be a y-dimensional vector,
then their product w = M ·v is an x-dimensional vector with
elements defined as follows: w(i) = sum(M(i, j) · v(j)),
1 ≤ j ≤ y. In pseudocode, this operator is implemented as
follows:

1 initialize w with zeros
2 for i: a matrix M row number
3 for j: a matrix M column number
4 w(i) += M(i,j) * v(j)
5 return w

This implementation is cache-efficient, when the matrix M
is stored in row-major order, and the same analysis, as we
did in matrix multiplication, can also be applied here. The
theoretical time complexity is O(x × y), where x is the
number of rows in the matrix M and y is the number of
columns in the matrix M. If the matrix M is square, that is,
the number of rows is equal to the number of columns, the
complexity is O(x2), the number of elements in the matrix.
This runtime can be improved, if the matrix has special
structure, so we do not need to use a double-nested for-
loop to compute the matrix-vector product; for example, if
the matrix or the vector have many elements that are equal
to 0 (so they are sparse), only non-zero elements contribute
to the result, and by using special data structures for storing
sparse matrices and vectors, the runtime may be significantly
improved.

D. Dot product

The dot operator calculates a dot product of 2 vectors. Let
v and w be x-dimensional vectors, then their dot product is
a scalar c = sum(v(i) · w(i)), 1 ≤ i ≤ x. In pseudocode,
this operator is implemented as follows:

1 c = 0
2 for i: a vector v element number
3 c += v(i) * w(i)
4 return c

The time complexity is O(n) where n is the vector length.
This time complexity can also be made sublinear when the
input vectors are sparse.

Figure 1. Hybrid.Poly Linear Algebra Operators Performance Evaluation.
Vector space dimensionality ranges from 10 to 4000.

III. EVALUATION

In this section, we run a series of Linear Algebra operators
on HYBRID.POLY. The hardware used for the tests is a
server having Intel(R) Xeon(R) CPU E7-4870 @ 2.40GHz
with 80 physical cores and 192 GB RAM.

The workloads names in the Figure III are mm for square
matrix multiplication by itself, dist for distance calculation
between 2 vectors using a square distance matrix of the same
size, dot for dot product between 2 vectors, The input sizes
are dimensions of the matrices and vectors; e.g. vector of
size 100 contains 100 floating-point elements and matrix of
size 100 contains 100× 100 = 10000 elements.

When input size increases one order of magnitude from
10 to 100, the matrix multiplication running time increases
about 1 order of magnitude, and when input size increases
one order of magnitude from 100 to 1000, the matrix mul-
tiplication running time increases about 2 orders of magni-
tude. This is different from what we predicted by theoretical
computational complexity estimation, and we attribute that
to better cache access patterns on small input sizes, for
example, small matrices with 102 = 100 elements fit entirely
into L1 cache, while larger matrices with 1002 = 10000
elements do not fit entirely into L1 cache but fit into L2
cache.

IV. RELATED WORK AND CONCLUSION

Gubanov in [2] describes the design and the architecture
of a multi-model polystore data fusion system Hybrid.Poly.
In [3] we continue and describe a few use cases for the
polystore. In this paper, we focus on evaluation of several
analytical operators.

There are several recent attempts to add analytical ex-
tensions (e.g. linear algebra operators) to Map/Reduce-



based engines supporting SQL as an add-on (e.g. SimSQL
[23]). Our system is a native parallel relational in-memory
store, which puts it in a different category compared to
any Map/Reduce-based derivative systems. In contrast to
SQL or linear algebra extensions implemented on top of
Map/Reduce, our engine, being a native parallel relational
store supports interactive workloads by nature.

Another venue of related work is associated with declar-
ative machine learning, namely, providing the user of a
computing engine with a means to specify machine learning
workloads in terms of high-level operators and freeing them
from the need to specify the implementation details. The
authors of SystemML implemented this approach for several
back-ends – classical Hadoop, Map/Reduce on Spark [24],
and explored the possibilities for the optimization [25]. Our
approach differs by aiming at support of wider range of
analytics than only machine learning and using an inter-
active parallel in-memory engine as a back-end, instead of
Hadoop or Spark, that enables interactivity. Our hybrid query
language is declarative, which is similar to these systems,
as well as our SQL extensions also support linear algebra.
Acknowledgments: We would like to thank anonymous
reviewers for their feedback on earlier drafts of this paper.
This material is based upon work supported by the National
Science Foundation (NSF) under Grant No. 1701081.

REFERENCES

[1] M. Stonebraker, “Big data means at least three different
things...” in NIST Big Data Workshop, 2012.

[2] M. Gubanov, “Polyfuse: A large-scale hybrid data fusion
system,” in ICDE, 2017.

[3] M. Podkorytov, D. Soderman, and M. Gubanov, “Hybrid.poly:
An interactive large-scale in-memory analytical polystore,” in
ICDMW, 2017.

[4] M. Pavlovic, D. Sidlauskas, T. Heinis, and A. Ailamaki,
“QUASII: query-aware spatial incremental index,” in EDBT,
2018.

[5] H. Doraiswamy, E. T. Zacharatou, F. Miranda, M. Lage,
A. Ailamaki, C. T. Silva, and J. Freire, “Interactive visual
exploration of spatio-temporal urban data sets using urbane,”
in SIGMOD, 2018.

[6] L. Ma, D. V. Aken, A. Hefny, G. Mezerhane, A. Pavlo, and
G. J. Gordon, “Query-based workload forecasting for self-
driving database management systems,” in SIGMOD, 2018.

[7] X. Wang, A. Feng, B. Golshan, A. Y. Halevy, G. A. Mihaila,
H. Oiwa, and W. Tan, “Scalable semantic querying of text,”
PVLDB, vol. 11, no. 9, pp. 961–974, 2018.

[8] I. Cano, M. Weimer, D. Mahajan, C. Curino, G. M. Fumarola,
and A. Krishnamurthy, “Towards geo-distributed machine
learning,” IEEE Data Eng. Bull., vol. 40, no. 4, pp. 41–59,
2017.

[9] A. Jindal, S. Qiao, H. Patel, Z. Yin, J. Di, M. Bag, M. Fried-
man, Y. Lin, K. Karanasos, and S. Rao, “Computation reuse
in analytics job service at microsoft,” in SIGMOD, 2018.

[10] M. Priya, M. Podkorytov, and M. Gubanov, “ilight: A flash-
light for large-scale dark structured data,” in MIT Annual DB
Conference, 2017.

[11] M. Gubanov, M. Priya, and M. Podkorytov, “Cognitivedb: An
intelligent navigator for large-scale dark structured data,” in
WWW, 2017.

[12] M. N. Gubanov, P. A. Bernstein, and A. Moshchuk,
“Model management engine for data integration with reverse-
engineering support,” in ICDE, 2008.

[13] M. Gubanov and L. Shapiro, “Using unified famous objects
(ufo) to automate alzheimer’s disease diagnostics,” in BIBM,
2012.

[14] M. Gubanov, L. Shapiro, and A. Pyayt, “Readfast: Structural
information retrieval from biomedical big text by natural
language processing,” in Information Reuse and Integration
in Academia and Industry. Springer, 2013.

[15] M. Gubanov and A. Pyayt, “Medreadfast: Structural informa-
tion retrieval engine for big clinical text,” in IRI, 2012.

[16] S. Ortiz, C. Enbatan, M. Podkorytov, D. Soderman, and
M. Gubanov, “Hybrid.json: High-velocity parallel in-memory
polystore JSON ingest,” in IEEE BigData, 2017.

[17] M. Simmons, D. Armstrong, D. Soderman, and M. N.
Gubanov, “Hybrid.media: High velocity video ingestion in an
in-memory scalable analytical polystore,” in IEEE BigData,
2017.

[18] M. N. Gubanov, L. Popa, H. Ho, H. Pirahesh, J.-Y. Chang,
and S.-C. Chen, “Ibm ufo repository: Object-oriented data
integration,” VLDB, 2009.

[19] S. Soderman, A. Kola, M. Podkorytov, M. Geyer, and
M. Gubanov, “Hybrid.ai: A learning search engine for large-
scale structured data,” in WWW, 2018.

[20] M. Gubanov and M. Stonebraker, “Large-scale semantic
profile extraction,” in EDBT, 2014.

[21] ——, “Text and structured data fusion in data tamer at scale,”
in ICDE, 2014.

[22] M. Gubanov and A. Pyayt, “Type-aware web search,” in
EDBT, 2014.

[23] L. Shangyu, G. Zekai, G. Michael, P. Luis, and J. Christopher,
“Scalable linear algebra on a relational database system,” in
ICDE, 2017.

[24] M. Boehm, M. W. Dusenberry, D. Eriksson, A. V. Ev-
fimievski, F. M. Manshadi, N. Pansare, B. Reinwald, F. R.
Reiss, P. Sen, A. C. Surve, and S. Tatikonda, “Systemml:
Declarative machine learning on spark,” in VLDB, 2016.

[25] T. Elgamal, S. Luo, M. Boehm, A. V. Evfimievski,
S. Tatikonda, B. Reinwald, and P. Sen, “Spoof: Sum-product
optimization and operator fusion for large-scale machine
learning,” in CIDR, 2017.


