
Hybrid.Poly: A Consolidated Interactive Analytical
Polystore System

Maksim Podkorytov, Michael Gubanov
Department of Computer Science

Florida State University

Abstract—Anecdotal evidence suggests the Variety of Big data
is one of the most challenging problems in Computer Science
research today [1]. First, Big data arrives from a myriad of data
sources, hence its shape and flavor differ. Second, hundreds of
different Big data management systems support different APIs,
storage/indexing schemes, and expose data to the users through
their data model lens, each specific to their own system. All of
these offer a significant impediment for Big data users who just
want an easy to use interface to all relevant data regardless
of its shape, format, size, and a back-end system used to store
it. Naturally, these differences also complicate development of
any analytical algorithms on top of large-scale, heterogeneous
datasets.

Here we describe HYBRID.POLY – a consolidated in-memory
polystore engine [2], designed to support heterogeneous large-
scale data and interactively process complex analytical work-
loads. We execute and evaluate several popular analytical work-
loads including Data Fusion, Machine Learning, and Music
search at scale.

I. INTRODUCTION

Proliferation of different data models and large-scale data

management systems [1], [2], [3], [4], [5], [6] complicate

access to heterogeneous Big data. To reflect this ”non-

transparency” it is also sometimes referred to as Dark Data
[7]. The access and execution of any workloads on such Dark
Data is problematic.

In this paper we describe HYBRID.POLY – an analytical

in-memory Polystore [2], [3] engine capable of ingesting and

processing complex analytical workloads over diverse large-

scale datasets at interactive speed. We describe a hybrid rela-

tional analytical query language stemming from SQL which is

based on the relational model. It enables advanced in-database
analytical workloads. We illustrate it by describing several

popular analytical workloads implemented in our language –

Data Fusion, Machine Learning, and Music similarity search.

We note that in our language, the complex analytical work-

loads are naturally expressed by a concise hybrid SQL query,

which is a rare and important property among such ”complex

analytics” systems. We also emphasize HYBRID.POLY’s inter-

active performance at scale.

Related work: There have been several recent attempts

to add analytical extensions (e.g. linear algebra operators)

to Map/Reduce-based engines supporting SQL as an add-on

(e.g. SimSQL [8]). Our system is a native parallel relational

in-memory store, which places it in a different category

compared to any Map/Reduce-based derivative systems due to

significant architectural differences [9], [10], [11], [12], [13],

[14], [15], [16], [17], [18], [19], [20], [21]. In contrast to

the systems having relational or linear algebra implemented

on top of Map/Reduce, our engine, being a native parallel

in-memory relational store supports interactive workloads by

nature. For example, real-time similarity matching for music

would be non-interactive using any Map/Reduce derivative

due to the relatively high latency stemming from scheduling,

distributing, and executing Map/Reduce jobs. Other systems

do not support the non-linear analytical workloads such as

the music similarity matching described here.

The engines supporting machine learning workloads as

high-level operators are another venue of related work as-

sociated with declarative machine learning. The authors of

SystemML implemented this approach for several back-ends –

classical Hadoop, Map/Reduce on Spark [22], and explored a

few of the optimization venues [23]. Our approach differs by

supporting a much wider range of analytics, not just machine

learning, and using an interactive parallel in-memory engine

as a back-end, instead of Hadoop or Spark. This enables

interactive performance of complex analytical workloads. Our

hybrid query language is declarative and our SQL-based

language includes linear (e.g. matrices and vectors) as well

as non-linear operators and clauses.

Another line of related research includes polystores – sys-

tems envisioned to store and query data coming from different

data sources. One such systems is BigDAWG [24]. While

BigDAWG mediates over a federation of different existing

engines, HYBRID.POLY chooses one consolidated parallel

engine as a back-end to store and query all data. This yields an

easier system to use with significant performance advantages

that “talks in one language” instead of ”having a user talk

in different languages” depending on the number of different

engines in the BigDAWG federation. Other key distinctions

of our approach are the in-memory storage, interactive query

performance, the hybrid language based on SQL tailored to

query different data models, as well as complex analytics

support. We have introduced our vision of HYBRID.POLY in

[2], [3].

Query by Humming (QbH) is a music retrieval approach that

involves taking a melody hummed by the user and looking

it up in the existing database [25]. One of the scenarios

implemented in our hybrid language demonstrates “Query by

Playing on a MIDI keyboard” (QbP), a general music retrieval

approach that can take a MIDI sequence played on any

instrument and interactively find and play similar music out

1996

2019 IEEE 35th International Conference on Data Engineering (ICDE)

2375-026X/19/$31.00 ©2019 IEEE
DOI 10.1109/ICDE.2019.00223

Fig. 1. Hybrid.poly architecture

of millions of music files available in a large-scale repository.

II. ARCHITECTURE

The HYBRID.POLY architecture is illustrated in Figure 1.

The in-memory storage engine is capable of the ingesting and

query processing of data in different data models (e.g. rela-

tional, JSON, XML, MIDI, Video, etc). The query interface

accepts user queries in a hybrid language that is a superset of

SQL providing extra capabilities to support complex analytical

workloads on both relational and non-relational data (e.g.

media files) [26].

Query Language: With our hybrid SQL language, it is

possible to store and query vectors and matrices as first-class

objects. Without these new data types, we would have to resort

to inefficient workarounds to convert these abstractions to their

relational equivalent and back, as demonstrated below.

First, we store vectors as attributes of a new type vector of a

regular relational table. Second, we embed several linear alge-

bra operations into our hybrid linear-relational query language

to simplify implementation of both in-database relational and

linear-algebra workloads. For instance, let us consider comput-

ing a dot product of 2 vectors. In our hybrid SQL, the query

looks very natural and concise:

SELECT id, vector1.dot(vector2) FROM VectorStorage

This is also possible in standard SQL, but requires the

inefficient and more complex query with a GROUP BY and

JOIN. Before that can occur, the vectors must be converted

to their relational equivalent (i.e. value1, value2 that are their

euclidean coordinates in the query below).

SELECT id, SUM(value1 * value2) FROM RelVecStore
WHERE index1 = index2 GROUP BY id

We added the following operators to extend SQL to support

analytical workloads:

• Plus, Minus, Dot, Equals operators for calculating the

sum, difference, dot product and equality of two vectors;

• getData, setData operators for accessing and modifying

vector elements by index;

• MusicMatch operator for calculating the similarity be-

tween two note sequences;

• SUM aggregate operator extended from computing the

aggregate on scalars to computing on vectors.

Using our hybrid SQL query language, it is easy to imple-

ment analytical workloads using both relational and analytical

operators inside a relational engine without the need to export

data for analytical processing outside the engine. We describe

below how it can be done for Data Fusion, Machine learning,

and Music search by writing concise hybrid SQL queries.

Although the same analytical workloads could be imple-

mented with user-defined functions (UDFs), we modify the

core language (add new abstractions and operators) to ac-

complish this task. There are several reasons why we have

chosen this option. First, the newly introduced abstractions

and operators are reusable among the many different analytical

workloads, whereas a single UDF (e.g. for training a machine

learning classifier) is usable only for this specific task. Second,

a UDF is too abstract to participate in meaningful cost-based

query optimization because it can be any user defined function,

which severely limits optimization horizons. By contrast, it is

possible to make the query optimizer aware of the new built-in

types and operators and to design new semantic rules for the

cost-based optimization that account for the semantics of these

new data types and operators. For these reasons, it is more

robust to add the new types to SQL than to have a custom

UDF on an as-needed basis.

Data Model: We extend the relational data model with

additional types and operations to support matrix and vector
abstractions and operators over them. Music data types are

stored in a relational model with additional metadata attributes

and vectorized notes. With HYBRID.POLY, the user is also

capable of ingesting and querying JSON documents when

parsed by a JSON parser and stored in a relational model

as a tree.

Storage Engine: In HYBRID.POLY we employ a distributed

in-memory storage engine with optional persistence. The

distributed storage handles large volumes of data while the

In-memory storage decreases latency and enables interactive
performance of complex analytical queries. Persistence pro-

vides fault tolerance in case of node failures or power outages.

Finally, we were able to introduce support of different models

on top of this storage, allowing the ingestion, processing, and

querying of heterogeneous data.

Scalability: We run our scenarios on web-scale datasets by

leveraging horizontal partitioning.

Query Optimization: We are currently working on a

scalable hybrid query optimizer supporting both linear, and

relational algebras, and non-linear operator nodes in the query

tree.

III. USER SCENARIOS

Interactive Music Search: The problem of music simi-

larity search will often appear in real-world settings. For

example, a musician with a new tune in mind might want

to check if there are similar songs in order to avoid copyright

infringement. Another musician may search for similar songs,

just like any other researcher to become familiar with the latest

1997

ideas and to find inspiration for a new song. Using our system

and hybrid SQL language, it is possible to run interactive
analytical workloads to retrieve and play similar music. We

illustrate below how anyone interested can play a melody on a

MIDI keyboard (or pick a tune from the existing database) and

the system will interactively find similar music fragments. We

store two music data sources – the original music MIDI files

represented as records with two attributes (notes and comment)
taken from the Clean MIDI subset of the Lakh Dataset [27],

[28] and MIDI fragments played by the user, represented as

records with the same two attributes.

SELECT r.score, r.comment FROM (
SELECT m.vec_notes.music_match(i.vec_notes,

’tone-invariant’) AS score, m.comment
FROM MidiStore AS m, MidiInput AS i) AS r
WHERE r.score > 0.98

After the user plays a melody (for example, a few notes

from Strangers in the Night by Frank Sinatra), the notes are

vectorized and ingested into our engine. The musicMatch
operator is our extension to SQL that allows us to match two

melodies by similarity and outputs a floating-point number in

the [0, 1] range. Once a certain similarity threshold has been

reached, the attributes of a matching melody are printed out.

The results are shown in Figure 2, which are displayed and

played in real-time, so the user can enjoy a variety of similar

music found by the system. As shown in the result, there are

16 tracks that fall under the criteria specified in the query.

Of these 16 tracks, 11 are perfect matches and 5 are almost-

perfect matches. There is a perfect match of the original

track (line 1, Sinatra Strangers in the Night), a cover of the

original track (line 2, Kaempfert Strangers in the Night), and

a few seemingly unrelated melodies that contain the sequence

of notes that is transpositionally equivalent to our fragment

(enabled by tone-invariant keyword in the query). The most

amusing and non-obvious match occurs in line 3, Bach Johann
Sebastian Orchestersuite Nr. 2 5. Polonaise). As we listened

to the rest of the listed tracks, we found the perfectly matched

line 4, Frank Sinatra Not as a Stranger, is a mislabeled original

track.

Machine Learning: As there are millions of web pages,

web searching is an important problem, and without a search-

engine it is very hard to find the required information. A

web crawler is a critical component of a Web search engine

that aims to browse all available web pages and create a

repository for further processing, indexing, and searching.

In this scenario, a stream of Web pages is produced by a

Web crawler and is immediately classified into four different

categories using a large-scale interactive multinomial Naive

Bayes machine learning classifier [29] implemented as a short
query in our language. The classification results can be used

to improve the relevance of the Web search results.

The classifier is trained on a subset of a large-scale Web

tables dataset [7] having millions of Web tables. Each docu-

ment belongs to one of four classes: job postings, forum posts,

songs and spam. There are a total of 21255 documents, 5000

of which are job postings, 5675 are forum posts, 4989 are

Fig. 2. The interactive music search result. The score is the measure of
similarity between the melody played by the user and the music in the
database. The comment is the metadata found in the MIDI file. A few melodies
matched our played tune; among these matches were the original melody, a
cover by Kaemphert and a few seemingly unrelated melodies such as the
Polonaise by J.S. Bach. The detailed analysis of the results revealed the Not
as a Stranger melody was mislabeled and is the original tune Strangers in
the Night.

Fig. 3. A sample of the classification results from the large-scale machine
learning demo scenario. The first six rows illustrate correctly classified
instances. The last two rows are misclassifications.

songs and 5591 are spam. The training data is of the same

format as the labeled tuples in Figure 3.

SELECT input.vec_wordCounts.dot(model.vec_weights)
AS likelihood,
model.category, input.id
FROM Input AS input, Model AS model
INTO Likelihood;

SELECT MAX(likelihood), id
FROM Likelihood
INTO MaxLikelihood
GROUP BY id;

SELECT l.id, l.category
FROM Likelihood AS l, MaxLikelihood AS ml
WHERE l.likelihood = ml.likelihood
AND l.id = ml.id;

We demonstrate the workload by asking a user to submit

the queries in a shell, interactively observe the training and

classification, and examine the classification results. As a

result of classification, each document in the stream produced

by a Web crawler is assigned the category predicted by

the classifier. Figure 3 illustrates a sample of classification

instances.

The listing above contains the queries that are used to

1998

classify Web pages. The trained classifier is stored in table

Model. For each of the categories a vector (i.e. a unidimen-

sional array of doubles) representing that category is stored.

The query training the model is omitted here. Given the

input document’s bag-of-word representation, a measure of

similarity is computed for this document and each category.

The category with the highest score is then assigned as a class

label.

Evaluation: In order to evaluate our classifier, we have

performed 10-fold cross-validation on our input dataset. The

F measure per class is shown in Table I.

posts jobs songs spam
F measure 0.728 0.743 0.737 0.843

TABLE I
THE F MEASURE FOR EACH CLASS.

Classification of a bulk of 2126 documents takes a few

seconds on a single Intel multi-core node and 192 GB RAM.

Using horizontal partitioning, we can classify larger datasets

by adding more machines to the cluster with our engine.

Music Search + Machine Learning + Data Fusion: In

this final and most advanced scenario, we show that the

workflows demonstrated in previous scenarios are composable.

This important property means that we can integrate the

time-consuming Extract-Transform-Load (ETL) procedures

in the query, automate it once, thus avoiding them in future

composite workflows. We illustrate this by composing the

data integration and machine learning capabilities in the

same query. The user can run the Songs classification on the

entire Web tables dataset [7]. The web table rows which are

classified as Songs are now fused with the MIDI tracks using

the musicMatch operator and song title matching the MIDI

metadata.

To simultaneously perform classification and data inte-

gration, the user can execute the following composite Data

Fusion/Classification query. (Parts of the query have been

omitted.) The results interactively follow the query submis-

sion.

SELECT wtsongs.allColumnsJoined
FROM (SELECT wt.allColumnsJoined, classified.label,

wt.rowNum, wt.column1, wt.column2, ...,
wt.column29

FROM WebTables AS wt, (...) AS classified
WHERE wt.id = classified.id) AS wtsongs, MidiStore

AS ms, MidiInput AS mi
WHERE wtsongs.label = 1
AND mi.vec_notes.music_match(ms.vec_notes) > 0.95
AND (ms.comment.contains(wtsongs.column1) ...
OR ms.comment.contains(wtsongs.column29))

Looking at the results, the user discovers that music similar
to his/her taste exists on iTunes. The user also discovers

the price and the option to purchase the track or entire

album. From the technology perspective, this query fragment

incorporates all logic - complex non-linear analytics (music
matching), linear-algebra-based analytics (machine learning),
and data fusion at scale - in a single hybrid SQL query.

Fig. 4. The music search combined with machine learning and data integra-
tion. The table contains the songs from Web tables dataset similar to what
the user plays. We can see that fusion with Web tables leads us to iTunes to
purchase similar music.

REFERENCES

[1] M. Stonebraker, “Big data means at least three different things...” in
NIST Big Data Workshop, 2012.

[2] M. Gubanov, “Polyfuse: A large-scale hybrid data fusion system,” in
ICDE, 2017.

[3] M. Podkorytov, D. Soderman, and M. Gubanov, “Hybrid.poly: An
interactive large-scale in-memory analytical polystore,” in ICDMW,
2017.

[4] M. Gubanov and M. Stonebraker, “Large-scale semantic profile extrac-
tion,” in EDBT, 2014.

[5] B. Alexe, M. Gubanov et al., “Simplifying information integration:
Object-based flow-of-mappings framework for integration,” in BIRTE,
2008.

[6] M. Gubanov and A. Pyayt, “READFAST: high-relevance search-engine
for big text,” in CIKM, 2013.

[7] M. Gubanov, M. Priya, and M. Podkorytov, “Cognitivedb: An intelligent
navigator for large-scale dark structured data,” in WWW, 2017.

[8] L. Shangyu, G. Zekai et al., “Scalable linear algebra on a relational
database system,” in ICDE, 2017.

[9] M. Gubanov and P. A. Bernstein, “Structural text search and comparison
using automatically extracted schema,” in WebDB, 2006.

[10] M. Gubanov, L. Popa et al., “Ibm ufo repository,” PVLDB, 2009.
[11] M. Gubanov and L. G. Shapiro, “Using unified famous objects (ufo) to

automate alzheimer’s disease diagnostics,” BIBMW, 2011.
[12] M. Gubanov, L. G. Shapiro, and A. Pyayt, “Learning unified famous

objects (ufo) to bootstrap information integration,” IRI, 2011.
[13] M. Gubanov, A. Pyayt, and L. G. Shapiro, “Readfast: Browsing large

documents through unified famous objects (ufo),” IRI, 2011.
[14] M. Gubanov and A. Pyayt, “Medreadfast: A structural information

retrieval engine for big clinical text,” IRI, 2012.
[15] S. Cheemalapati, M. Gubanov et al., “A real-time classification algo-

rithm for emotion detection using portable eeg,” IRI, 2013.
[16] M. Gubanov, M. Stonebraker, and D. Bruckner, “Text and structured

data fusion in data tamer at scale,” ICDE, 2014.
[17] Z. Abedjan, J. Morcos et al., “Dataxformer: Leveraging the web for

semantic transformations,” in CIDR, 2015.
[18] M. Gubanov, P. A. Bernstein, and A. Moshchuk, “Model management

engine for data integration with reverse-engineering support,” in ICDE,
2008.

[19] R. Khan and M. Gubanov, “Nested dolls: Towards unsupervised clus-
tering of web tables,” in Big Data, 2018.

[20] M. Podkorytov and M. Gubanov, “Hybrid.poly: Performance evaluation
of linear algebra analytical extensions,” in Big Data, 2018.

[21] S. Soderman, A. Kola et al., “Hybrid.ai: A learning search engine for
large-scale structured data,” in WWW, 2018.

[22] M. Boehm, M. W. Dusenberry et al., “Systemml: Declarative machine
learning on spark,” in VLDB, 2016.

[23] T. Elgamal, S. Luo et al., “Spoof: Sum-product optimization and
operator fusion for large-scale machine learning,” in CIDR, 2017.

[24] V. Gadepally, P. Chen et al., “The bigdawg polystore system and
architecture,” in HPEC, 2016.

[25] Y. Zhu and D. Shasha, “Query by humming: a time series database
approach,” in SIGMOD, 2003.

[26] E. F. Codd, “A relational model of data for large shared data banks,” in
CACM, 1970.

[27] C. Raffel, “Learning-based methods for comparing sequences, with
applications to audio-to-midi alignment and matching,” in PhD Thesis,
2016.

[28] “online: http://colinraffel.com/projects/lmd/,” 2016.
[29] J. D. M. Rennie, L. Shih et al., “Tackling the poor assumptions of naive

bayes text classifiers,” in ICML, 2003.

1999

