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ABSTRACT
Keyword-search engines (e.g. Web-search) usually can be
outperformed by a specialized system optimized for a spe-
cific domain, type of data, or queries [8, 2, 12, 5, 11, 9]. For
example, Halevy et. al. in [13] demonstrate how a special-
ized Google Fusion Tables spatial search can outperform the
general-purpose Google Web-search on bike trails search in
San Francisco Bay Area. At the same time, Web content
providers usually exhibit a specific focus for their postings.
For example, information at http://www.csail.mit.edu is
devoted to Computer Science research and education, Han-
nah Montana is mostly tweeting about music, and the same
is true for most sources.
This paper describes the work in progress on a new Type-

aware Web-search system that uses topical focus of informa-
tion sources to process a large class of queries better than
a regular Web search-engine. It leverages semantic profiles
similar to [10, 6, 7] and a new Type-aware Locality-Sensitive
Hashing (TLSH) scheme to accomplish it.

1. INTRODUCTION
Figure 1 illustrates search-results from one of the Web

search engines for query Frozen in Phoenix where a user is
trying to find a theater to watch a movie. You can see the
search-results are not the best (about ice cream and frozen
yogurt). It happened, because the generic Web-search en-
gine employs simple term matching of the query with the
Web pages, and did not take into account type information,
which can be done to get more relevant results. Table 1 illus-
trates the Web-search results of a type-aware search-engine
described here for queries Careers of People with Ph.D. You
can see, it returns precisely what the user has been asking for
in these queries. A regular Web-search engine would return
career-pages of companies and recruiting agencies, resulting
from term matching to careers.
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Figure 1: Search-results for Frozen in Phoenix

Query: Careers of People with Ph.D.

Results: - Romania News Watch:

...Ponta obtained his PhD from the University of

Bucharest while acting as Secretary of State

in the government of an earlier prime minister..

Table 1: Type-aware Search Results

2. ARCHITECTURE
The crawled Web pages are processed by a Natural Lan-

guage Processing domain-dependent parser, which emits the
entity data along with the text fragments they came from
and saves the result into a large-scale storage (see Figure 2
for a schematic). Both a large-scale semi-structured sharded
storage engine as well as a parallel relational engine are used.

The earlier work in [10] introduces semantic profiles in-
tended to capture the semantics of an information source
and store it in a compact and reusable manner. It summa-
rizes and accumulates all types of entities from the source.
For example, the newspaper New York Times often pub-
lishes about companies, products, and organizations; The
Finance usually tweets about dividends and products; The
Oregonian publishes about sports, holidays, music, and
hence their profiles are comprised of these types. These pro-
files are calculated and saved for each source. Due to space
limitations, interested readers are referred to [10] for more
details on profile construction.

Next, the hashing routines treat each profile as a vector
and assign it to one of the hash tables. Similarly, the in-
coming query is represented a vector, the query processing
module computes the set of relevant hash tables for a query,
the relevance score of the documents from these hash tables
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Figure 2: Architecture

and the query is computed, and finally the documents are
ranked by this relevance score and output to the user.

3. TYPE-AWARE WEB-SEARCH
Type-aware Locality Sensitive Hashing: Locality-

Sensitive Hashing (LSH) [14] is an algorithm that enables
searching for near neighbors in a high-dimensional vector
space Sn with dimensionality n. Formally, given a query
q ∈ Sn, return the nearest neighbors of q within certain
radius R. LSH performance crucially depends on a family
of hash functions F that it uses to map the input vectors
to its internal data structures. In order for the algorithm to
perform well, F usually has to reduce the dimensionality of
the original vector space still satisfying the locality-sensitive
requirements on the reduced vector space. F is considered
to be locality-sensitive if collision of two vectors v1 and v2
under a random choice of a hash function from F depends
only on the distance between v1 and v2. Refer to [3] for an
overview of locality-sensitive hash-function families.
Here, a new two-tier family of hash functions Ψ is de-

scribed and used. First, it maps the original vector space
V of terms into a vector space of types - T , hence reduces
dimensionality (there are much less types than terms). Sec-
ond, k random unit vectors u ∈ T are generated, which
defines a family of hash-functions h ∈ Ψ as follows h(v) =
sign(u · v/∥v∥) : u, v ∈ T . Refer to [4] for a proof of its
locality-sensitivity. Angular distance measure is used here
for this vector space.
Query Processing: The queries and Web documents are

represented as vectors in a high-dimensional vector space Sn

with dimensionality n (number of types). To return vectors
(Web documents) within raduis R of the query q the algo-
rithm concatenates k hash functions hi ∈ Ψ described above
into a composite hash function hc(v) = h1(v), .., hk(v), hence
creating a family of hash functions hc ∈ Φ.
Next, for query q it computes all functions from hc and

considers the documents only from the corresponding hash
tables. It returns all vectors v from those hash tables that
are within angular distance R from q. The evaluation be-
low justifies that using this semantic hashing/retrieval algo-
rithm outperforms a generic Web-search engine by relevance
of search-results.
Relevance Evaluation: Here, relevance gain of TLSH

hashing/retrieval scheme compared to a general purposeWeb-
search engine for “type-containing“ queries (i.e. containing
a Named-entity) is quantitatively evaluated. An experiment

was conducted to calculate NDCG (Normalized Discounted
Cumulitive Gain) [1] on a static set of queries with respect to
a general purpose Web-search engine, which provides quan-
titative insight into their performance difference. NDCG is
one of the standard widely used search relevance measures,
which is employed by major search engines and, similarly to
F-measure, measures both precision and recall of retrieval.
NDCG is well suited for search evaluation, because it re-
wards relevant results in the top positions more than those
ranked lower. Due to space limitations, interested readers
are referred to [1] for details about NDCG computation. To-
tal NDCG gain over all queries turned out to be very large
> 6%. Usually for two industrial Web-search engines NDCG
difference more than 4% is considered to be significant.
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