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Abstract—Anecdotal evidence suggests that the variety of Big
data is one of the most challenging problems in Computer
Science research today [Stonebraker, 2012], [Ou et al., 2017],
[Guo et al., 2016], [Bai et al., 2016]. First, Big data comes at us
from a myriad of data sources, hence its shape and flavor differ.
Second, hundreds of data management systems which work with
Big data support different APIs and storage/indexing schemes
while exposing data to the users through the data model lens,
specific to each system. These differences can impede work for
users who simply want an accessible interface which can handle
relevant unstructured data that is stored within a back-end
system. Naturally, such discrepancies in formats, sizes, and shapes
can also complicate the development of analytical algorithms
which could be implemented on top of large-scale, heterogeneous
datasets.

[Gubanov, 2017b] introduced a consolidated polystore engine,
designed to seamlessly ingest and query any type of large-scale
data. In this paper we describe a variety of complex analytical
workloads that can be processed by such polystore as well as
associated research challenges.

Index Terms—Large-scale data management, Big data ana-
lytics, In-memory data management, Polystore, Polyfuse, Query
optimization, Linear algebra, Relational algebra, Web search,
Data Integration, Music search, Machine Learning, Locality-
sensitive Hashing, Computer vision.

I. INTRODUCTION

Proliferation of different Big data engines and data models
designed to handle Variety of Big data [Stonebraker, 2012]
introduce a significant impediment on the way to transparency
and ease of access to it. Because of that such data is sometimes
called Dark Data [Priya et al., 2017], [Gubanov et al., 2017]
to reflect difficulties of getting insight into it. Of course, not
only accessing, but also supporting any simple or complex
analytical algorithms on top of Dark Data is also problematic.

Here we envision HYBRID.POLY – an analytical Polystore
system [She et al., 2016] that would represent a common
ground for storing, accessing, and analyzing heterogeneous
large-scale datasets. It would treat data holistically, thus allevi-
ating difficulties arising in context of pushing data to different
data management engines [She et al., 2016]. At the same time,
it would support most popular data models, so any data can
be ingested by design.

This paper is structured as follows. In Section II we de-
scribe HYBRID.POLY architecture. Section IV goes over the
data models supported by HYBRID.POLY. In section V, we
envision the challenges on the way to building and maintaining

Figure 1. HYBRID.POLY Architecture

such system. Section VI is devoted to popular applications
supported by HYBRID.POLY. We detail related work in Section
III.

II. ARCHITECTURE

The HYBRID.POLY architecture is illustrated in Figure 1.
The in-memory storage engine supports a variety of data
models. The query interface accepts user queries in a hybrid
language that is a superset of SQL providing extra capabilities
to make complex analytical queries (e.g. training a Machine
Learning classifier) on non-relational data (e.g. JSON, XML,
media files) along with relational data [Codd, 1970]. The query
is automatically optimized by a hybrid optimizer that is able
to process large hybrid (i.e. having not only relational nodes)
query plans having thousands of nodes.

A. Query Language

One of the approaches is to have a scripting language
(like the one provided by Apache Spark, Pig) and expose
HYBRID.POLY engine’s API to this script so that the users
could run interactive queries. The advantage of this approach
is that the logic of querying is abstracted from the logic of
storing the data, so that it would be possible to add more
data models later and expose querying APIs for these models.
The disadvantage is that it would be another Domain Specific



Language (DSL), so some users may be reluctant to use it
compared to SQL.

Another approach is to design a query language on top of
SQL and augment with pure (not affecting the stored data)
query constructs from different data models. We add more
data types that exist in standard SQL to allow interoperability
between different data models as well.

B. Query Processing Engine

The query processing engine consists of the query parser,
the query compiler, and the query optimizer. The query parser
processes the user’s query and compiles an Abstract Syntax
Tree (AST). The query compiler compiles the AST into an
internal query representation that is run against the storage.
It is possible to reuse the query compilers for the existing
query languages and put them into different modules that
provide some standard interface to deal with an abstract
query compiler; it is also necessary to have a coordinator
to manage these components and create the data structure
that corresponds to the compiled query in the hybrid query
language.
Query Optimizer: We envision two types of query optimizers.
The static query optimizer rewrites the AST to get a cheaper
execution plan. For example, reordering two operators in a
tree, might yield the same result, but improved performance.
The dynamic query optimizer uses the information about
current data (such as the matrix dimensions) at runtime to
pick the optimal execution plan.

The static query optimizer may use the following kinds
of optimization. The relational optimization reuses the opti-
mization strategies built into relational engines starting from
System R optimizer [Kacimi and Neumann, 2009]. The hybrid
one-node cost-based optimization routines examine each node
of the logical query plan and pick the physical operator
that uses the least resources (time, memory, bandwidth) for
the particular logical task. The hybrid cross-node cost-based
optimization routines examine groups of logical operators and
perform logical query plan rewrites before mapping the logical
query plan to the physical operators. Operator fusion, the
optimization strategy to map a series of logical operators into
one physical operator falls into that category, however there is
no prior work that uses this strategy for hybrid query plans.

C. Storage Engine

We envision HYBRID.POLY to employ a distributed in-
memory multi-model storage engine with optional persistence.
The distributed storage allows to handle larger volumes of
data. In-memory storage decreases latency, enables interactive
performance for complex analytical queries. Persistence is
necessary for fault tolerance. Finally, support of different
models is necessary to store heterogeneous data.

D. Hardware acceleration for analytical Query Processing

To speedup analytic query processing, we envision HY-
BRID.POLY to support an array of recent NVidia GPUs or
a specialized matrix processing unit similar to Google TPU

[Jouppi et al., 2017]. For example, NVidia Volta, one of such
customized matrix processing architectures is going to become
available for the general public in the beginning of 2018 [www,
2017c].

III. RELATED WORK

In BigDAWG [Duggan et al., 2015] [Gadepally et al., 2016]
[She et al., 2016] [Mattson et al., 2017] it is possible to query
the data that is distributed across different database engines
with different underlying data models; the queries are written
in a language supporting nested queries and subqueries written
in the languages of BigDAWG federated components. The data
may be moved between subqueries logically (and federated
components physically) using a CAST-expression, provided
the moved object semantically exists in both subqueries’ data
models. The query is optimized within each subquery by
reusing the query optimizers of federated components. They
also suggest a rule-based mechanism that is able to translate
simple components (data types and operations) between the
boundaries of different data models, thus influencing the
rewriting process within a single component by extending the
search space of possible plans. However, as the cardinality of
the set of possible rewrites is too high, the burden of creating
interesting rules is placed on the users of the system.

Our envisioned system is different, because we selected
consolidation rather than federation of storage engines very
early in our architecture, which makes all design challenges,
storage, query processing and optimization different from
federated architecture that BigDAWG follows. We treat data
coming from different sources and conforming to different
data models holistically, instead of federating multiple data
management engines. Hence communication and maintenance
costs associated with our system are much less compared to
federation of data engines with a mediator. HYBRID.POLY is
also focused not only on supporting different data models
like BigDAWG, but also on a variety of high-performance
complex analytical workloads, hence the language has many
built-in analytical constructs, as well as the query optimizer
that has the corresponding nodes in the query graph. We also
believe that the optimizer should be fully automatic, as a
manual approach does not scale with the number of sources
and models.

Recently, there have been several attempt on top of a tra-
ditional data management engines. One of the recent attempts
to add analytics on top of the relational model was made by
[Shangyu et al., 2017]. They have built an engine on top of
Map/Reduce framework that has relational tables and Linear
Algebra objects as first-class citizens. However, they do not
consider the problem of supporting a variety of different kinds
of data and data models. Also, because the system is built on
top of Map/Reduce and all queries are being translated into
Map/Reduce jobs, it is not suitable for interactive workloads.

Another venue of the related work is associated with en-
abling the users of data managements systems to perform
Machine Learning tasks in a declarative way. The notable
approach was made in [Ghoting et al., 2011], where the



authors have considered the introduction of Declarative Ma-
chine Learning on MapReduce. Typically data scientists had
to write the Machine Learning solutions in Java and such
code was data agnostic, i.e. it depended heavily on data
sources and data distribution between MapReduce nodes. In
this paper Ghoting et al. have invented a scripting language
that allows to operate scalar values and matrices in a way
that is independent of their physical representation. All the
decisions about physical operator selection are deferred to the
SystemML query optimizer.

Kunft et al. in [Kunft et al., 2016] also explore the problem
of unification of relational and linear algebras. They are trying
to start from the point of view of how to optimize the hybrid
workflows that operate on both relations and matrices. Their
solution is to create generic types for matrices and relations
and apply category theory to optimize the queries that operate
on both data types. They also include reasoning about different
physical representations of matrices as well as relations in their
framework.

IV. SUPPORTED DATA MODELS

Relational data model. One of the popular data types we
envision to support is tabular data, i.e. data organized in tables
in such a way that all values in a column have the same
data type (e.g., a number, a string, a datetime). Relational
data model [Codd, 1970] has proven itself as it has been
used for decades in commercial RDBMSes , but it has its
drawbacks. One of them is difficulties in expressing numerical
algorithms in terms of SQL, the de-facto standard language
used in RDBMSes [Astrahan et al., 1976b].

Array data model. Another data type we envision to
support is arrays. The arrays are rectangular collections of
atomic values, namely, numbers (e.g. floating point, integer,
precise decimals), booleans and strings. Each atomic value
within an array is associated with a unique tuple of integers
that is the multidimensional index of that value within the
array, all such tuples have the same length for a given array and
the numeric value of that length is the number of dimensions of
that array; each integer within a tuple is indexing a dimension
of the array, integers within a tuple have the lower bound
of 0 and the upper bound of the length of the dimension
corresponding to that index. Some common examples of arrays
are matrices (2-dimensional arrays), vectors (1-dimensional
arrays) and scalars (0-dimensional arrays). Arrays with more
than 2 dimensions are also used for scientific purposes, for
instance, for training machine learning classifiers such as
Neural Networks, for Tensor calculations in Chemistry and
Physics. Below we list some of the fundamental operations
on arrays we envision to support:

1) element-wise summation, e.g.(
1 2
3 4

)
+

(
4 3
2 1

)
=

(
5 5
5 5

)
(1)

2) element-wise subtraction, e.g.(
1 2
3 4

)
−
(
4 3
2 1

)
=

(
−3 −1
1 3

)
(2)

3) element-wise product (aka Hadamard product), e.g.(
1 2
3 4

)
⊗
(
4 3
2 1

)
=

(
4 6
6 4

)
(3)

4) element-wise inverse (x→ 1
x ), e.g.

inv

((
1.0 2.0
0.5 4.0

))
=

(
1.0 0.5
2.0 0.125

)
(4)

5) element-wise application of standard (found in mathe-
matical libraries of many programming language) func-
tions: sin, cos, exp, ln, sqr, sqrt, e.g.

sqrt

((
1.0 4.0
0.25 6.25

))
=

(
1.0 2.0
0.5 2.5

)
(5)

6) element-wise conversion between different data types of
matrix cells (real and complex floating point numbers,
integer numbers, booleans and strings), e.g.

int

((
1.0 4.0
0.25 6.25

))
=

(
1 2
0 6

)
(6)

7) statistical functions: size, min, max, argmin, argmax,
mean, std, e.g.

mean

((
1.0 4.0
0.25 6.25

))
=

1 + 4 + 0.25 + 6.25

4
= 2.875

(7)
8) transposition (flipping dimensions), e.g.

transpose

((
1.0 4.0
0.25 6.25

))
=

(
1.0 0.25
4.0 6.25

)
(8)

9) slicing (getting a rectangular subregion of a matrix), e.g.
getting elements with positions from 1 to 3 in a second
row of a matrix. e.g.

slice

((
1.0 4.0 9.0
0.25 6.25 0.0

)
, 2, 1 : 3

)
=
(
0.25 6.25 0.0

)
(9)

10) cross-product (aka matrix-matrix multiplication), e.g.(
1.0 4.0 9.0
0.25 6.25 0.0

)
×

2.0
1.0
0.0

 =

(
6.0
6.75

)
(10)

11) factorization [www, 2017b] [wik, 2017b], e.g. SVD-
factorization:

SV D factorize

((
0 0 −2
−4 0 0

))
=

=

(
0 1
1 0

)
×
(
4 0 0
0 2 0

)
×

−1 0 0
0 0 −1
0 1 0

 (11)

12) splitting [wik, 2017c], e.g. LDU-splitting:

LDU split

1 2 3
4 5 6
7 8 9

 =

=

0 0 0
4 0 0
7 8 0

+

1 0 0
0 5 0
0 0 9

+

0 2 3
0 0 6
0 0 0

 (12)



13) computable properties of square matrices (trace, deter-
minant, eigenvalues and eigenvectors), e.g.

trace

1 2 3
4 5 6
7 8 9

 = 1 + 5 + 9 = 15 (13)

There are several considerations regarding the data model.
First, for element-wise operations, there exist their counter-
parts where one of the arguments is scalar, so it makes sense
to implement these scalar-on-matrix ops consistently with
element-wise ops. Second, some higher-level operations such
as numerous matrix factorizations (LU, QR, Cholesky, SVD,
NMF) as well as Fourier transformations are widely used in
numerical applications [Sra and Dhillon, 2006] [Alter et al.,
2000] [Trefethen and Bau, 1997]. Finally, the iterative methods
of solving systems of linear equations (such as Gauss-Seidel
[Young and Gregory, 1988]) use matrix splitting, so matrix
splitting routines (e.g. A→ L+D+U , where L is the lower
triangle, D - diagonal and U - upper triangle) may be useful
for running iterative solvers on some matrices stored in our
database.

XML data model. XML data, unlike relational is designed
to include not only data, but also schema of that data in the
same file. It is also possible to define complex nested data
structures using XML. An example of XML file can be seen in
Listing 1. Simultaneous human and machine readability led to
usage of XML format for systems configuration (e.g. Apache
Maven), Java EE uses XML to serialize the data that is used by
different services. There exists a standard query language to
process XML data, called XQuery [Chamberlin et al., 2001],
it was revised multiple times after its introduction. The data
model organizes items in a tree-like structure, and the query
language applies functions to collections of nodes that satisfy
certain criteria. The access to elements within the tree is done
in a fashion similar to accessing files within a file system.

Listing 1. XML example
<!DOCTYPE glossary PUBLIC "-//OASIS//DTD

DocBook V3.1//EN">
<glossary><title>example glossary</title>
<GlossDiv><title>S</title>
<GlossList>
<GlossEntry ID="SGML" SortAs="SGML">
<GlossTerm>Standard Generalized Markup

Language</GlossTerm>
<Acronym>SGML</Acronym>
<Abbrev>ISO 8879:1986</Abbrev>
<GlossDef>
<para>A meta-markup language, used to

create markup
languages such as DocBook.</para>

<GlossSeeAlso OtherTerm="GML">
<GlossSeeAlso OtherTerm="XML">
</GlossDef>
<GlossSee OtherTerm="markup">
</GlossEntry>
</GlossList>
</GlossDiv>
</glossary>

JSON data model. Another data model that organizes data
in a tree-like manner is JSON. JSON uses Javascript syntax to
organize atoms (strings and numbers), and arrays of atoms into
mappings, also known as dictionaries, having string identifiers
as keys. An example of JSON file can be seen in Listing 2
[www, 2017e]. Due to its simplicity and easy interoperability
with Javascript the format gained popularity [Mongodb, ].
However, there are still considerable differences in query
languages among storage engines and there is no de-facto
standard. However, de-jure there exists an RFC [www, 2017a]
that suggest how to query elements within a JSON document,
and it has been implemented in some of the storages. It could
be used as a starting point for querying the JSON data stored
in our polystore, as it promises to be the common feature of
JSON stores.

Listing 2. JSON example
{
"glossary": {
"title": "example glossary",
"GlossDiv": {
"title": "S",
"GlossList": {
"GlossEntry": {
"ID": "SGML",

"SortAs": "SGML",
"GlossTerm": "Standard Generalized

Markup Language",
"Acronym": "SGML",
"Abbrev": "ISO 8879:1986",
"GlossDef": {

"para": "A meta-markup language, used to
create markup languages such as
DocBook.",
"GlossSeeAlso": ["GML", "XML"]

},
"GlossSee": "markup"

}}}}}

Graph data model. Some data as social network con-
nections and ontologies is better represented as graphs, i.e.
nodes, edges and properties assigned to both nodes and edges.
There exists a separate class of Graph databases specifically
optimized for dealing with large amounts of data organized
in graphs, running graph processing routines such as depth-
first search, breadth-first search, shortest path discovery and
maximum flow. Graph databases provide query interfaces, and
it is necessary to use them in HYBRID.POLY’s query language.

More data types: images, audio files, geo tags. A large
amount of data is represented by images, videos and audio
files; for instance, images of cells in Biology, images of sky
in Astrophysics, media storages such as Spotify, Apple Music,
Youtube and Vimeo. There does not exist a data model for
storing the media files, although there exist the metadata that
comes along with them (e.g. EXIF format for embedding the
properties of photography equipment into image files, ID3 tags
for decorating music tracks with album cover image and genre,
author and title information as well as technical details like
encoding, quality, discretization frequency and resolution).



Figure 2. Hybrid cross-node optimization

V. CHALLENGES

Unified Data Model. There is an abundance of different
data models and it is necessary to think of the data model
that incorporates all the different data types and the relations
between them. In modern databases, there exists a somewhat
limited approach for achieving that goal; for instance, the
MS SQL Server allows to store XML [www, 2017f] and text
files in the database. However, the existing approaches do not
handle all of the data types and there is no query language that
allows to query all of them simultaneously. UFO project at
IBM Almaden [Gubanov et al., 2009], [Gubanov and Shapiro,
2012] is one of the attempts to design and evaluate a unified
data storage abstraction spanning different data models. Model
management is another project aimed at designing operators
manipulating schemas and mappings between them [Gubanov
et al., 2008].

Design of the Storage Engine. The data management
systems are designed to store particular data types and are
expected to operate under particular workload conditions; thus,
they have storages carefully optimized for these data types and
workload conditions. As HYBRID.POLY is able to store and
query different kinds of data, the design of the component
responsible for storage of that data is a challenge. There are
two options for the storage engine of a hybrid system. The
first option is to have a federation of storages for each data
type managed by a mediator [She et al., 2016]. Another option
is to have a single consolidated storage that is able to handle
each data type. We envision the latter have better performance
due to the reduced communication and query processing cost.

Design of the Query Compiler. Having designed the
unified data model, it is necessary to be able to ingest the
data in HYBRID.POLY as well as query the data from the
system. If data is stored in different storages optimized for
specific data types [She et al., 2016], it is possible to reuse the
logic that is used for compiling the queries that operate within
one data type, though it is necessary to apply effort on wiring
together these elementary pieces into the HYBRID.POLY’s final
query compiler. For this case, it is preferred to have the
query compilers for each data type abstracted into modules
with a standard interface, and one global coordinator of these
modules. Otherwise, it is necessary to develop the query
compiler taking into account the consolidated storage.

Design of the query optimizer. Another challenge is the
design of the query optimizer. Substantial work body has

Figure 3. Relational cross-node optimization

Figure 4. Hybrid single-node optimization

been done on query optimization in the standard RDBMSes
[Astrahan et al., 1976a] as well as some modern systems
[Michiels, 2003]. However, as HYBRID.POLY supports a larger
variety of data types, it is necessary to optimize the queries
in the hybrid query language, building on top of the previous
work done on optimization. An initial approximation to the
solution to this problem could be performing the optimization
dynamically, collecting the statistics, and then combining these
results in the global query optimizer. In this approach, the
storage engine must expose these statistics to the optimizer,
otherwise statistics collection is not feasible. It is also chal-
lenging to consolidate the statistics gathered for different
storage types if the federation storage architecture is chosen,
because storages for different data types expose different kinds
of statistics. Again, there is the similar pattern where the
solutions to subproblems are abstracted into modules with
a standard interface, and one global coordinator uses this
interface to do the desired task.

In HYBRID.POLY, we envision three kinds of optimiza-
tions – relational cross-node, hybrid cross-node, and hybrid
single-node optimization. Figure 3 illustrates an example of
purely relational optimization (pushing down a selection),
Figure 4 illustrates an example of single-node hybrid opti-
mization (distributed matrix multiplication, substitution of left
operand replication by distribution of both operands), Figure
2 illustrates an example of hybrid cross-node optimization
(pushing down matrix multiplication). There are many other
possible optimizations of either of these three types, we picked
these as simple examples. Section II-B describes possible
optimizations in more detail. This optimizer must also scale
to large plans having thousands of nodes.

With respect to Linear Algebra support, a few challenges



also appear. First, there exist different formats of storing
matrices, as some of matrix data is dense (e.g. numeric
representations of grayscale images where each pixel is as-
sociated with a number that carries information about its
intensity) and some is sparse (e.g. matrices that arise in finite
difference methods (FDM) during the numerical solution of
partial differential equations (PDE) [Saad, 2003]). Therefore
it is necessary to be able to store all kinds of matrix data and to
perform operations on data stored in possibly different forms.
Looking from another perspective, as the number of operands
in an expression that operates on matrices grows, the number
of possible combinations of the storage types for the operands
grows exponentially [Elgamal et al., ], and so does the number
of physical plans for the query, handling this big number of
possible plans is a challenge.

VI. APPLICATIONS

A. Web-search

One of the possible applications of HYBRID.POLY is its use
as a back-end for a web search engine. A web crawler uses fast
data ingest and fast analytical capabilities to add documents
to the database with computed text properties such as TF/IDF
[www, 2017d], where a user can query for documents stored
within the database. HYBRID.POLY is also able to perform
ranking of search results using Convolutional Neural Networks
(CNN) or other ranking algorithms.

1) Ranking of search results: The following query com-
putes a text document search rank using an implemented
ranking function called classify:

SELECT classify(d.v) AS score, d.id FROM
Documents d

WHERE d.id = 13243;

Running Large-Scale Machine Learning tasks from a client
interface to the database becomes feasible, as users have the
means to define these tasks using the HYBRID.POLY query
language. These particular tasks run in-database, which avoids
costly Input/Output to and from an external computing engine
(such as Spark or Dryad).

2) Machine Learning: For example, a group of text doc-
uments can be classified by their topic using the Naive
Bayes classification routine. The input for this procedure is
the data store called Document which contains precomputed
word counts and an associated group id. The classification is
performed as follows:

Histogram Construction. At this step the vector of cumu-
lative word counts is constructed for each document class. In
addition, the number of documents that fall into each class
is computed, where the result is then placed into a new set
histogram. The query is as follows:

SELECT SUM(Document.vector) AS word_count,
COUNT(Document.vector) AS size, Document.
label

FROM Document
INTO Histogram
GROUP BY Document.label;

Histogram Smoothing. Next, the Naive Bayes model is
trained. The model is another set of objects that may be
used to predict a document’s class given the vector of word
counts for that document. The model is obtained as follows:
considering the set obtained at the previous step, for every item
we apply the unary function f(x) = ln x+a

size+l∗a where size is
the second element of the tuple, l is the vector’s dimensionality
and a is the parameter of Lidstone (Laplace) smoothing [Chen
and Goodman, 1996], defined by the user. The modified vector
and answer are then placed into a new set model.

SELECT LOG((word_count + 1) / (size + LEN(
word_count))) AS weight, label

FROM Histogram
INTO Model;

Likelihoods Construction. Next, the classification of doc-
uments with unknown document class is performed. This is
achieved by pre-computing and storing the set of likelihoods
that a document belongs to a document class for each doc-
ument and each document class. For each document of the
test set and each document class stored in the Histogram set,
we compute the measure of cosine similarity between the
document and the document class. For the computation of
cosine similarity we use dot product of two vectors. This is
also the main part of Naive Bayes prediction task. The result
is put into the new set Likelihood.

SELECT DOT(Input.word_count, Model.weight) AS
likelihood, Model.label, Input.id

FROM Input, Model
INTO Likelihoods
ORDER BY Input.id;

Final prediction. Finally, now that every combination of every
document and document class in the set Likelihood has the
likelihood estimation of the document belonging to the class,
it is wise to choose the class with maximum likelihood is
chosen for a given document.

SELECT MAX(likelihood), id, label
FROM Likelihoods
GROUP BY id;

B. Clustering using Locality-Sensitive Hashing (LSH)

One of the popular scalable clustering algorithms is
Locality-Sensitive Hashing [Slaney and Casey, 2008] (LSH).
It has been applied to several problem domains, such as audio
similarity identification, image similarity identification, video
fingerprinting, audio fingerprinting, gene expression similarity
identification and other kinds of similarity identification. Our
query language is capable of expressing the LSH workflow,
so the users can perform all of the mentioned similarity
identification tasks on large datasets of heterogeneous data.

1) LSH query example: In this example it is assumed
that the set Hashes contains the pre-generated family of
hash functions that conforms to certain rules that enable the
use of this family in LSH clustering and querying process.
The set Documents contains the vector representation of
text documents (e.g., Bag-of-Words) on which we perform



clustering. The set UnclassifiedDocuments contains the vector
representation of text documents for which we want to know
their closest neighbors from the set of Documents.

Clustering. On this step we apply all hash functions from
the set Hashes to each document from the set of documents
that we want to cluster. Each hash function application is
computing a dot product between the hash vector and the
vector representation of a document. The hash-document pairs
that the hash function application deemed positive are then
stored in the set Model.

SELECT h.id AS hid, d.id AS did, SIGN(DOT(h.v,
d.v)) AS dp

FROM Hashes h, Documents d
INTO Model
WHERE dp = 1
ORDER BY hid, did;

Querying the Nearest Neighbors. Given a vector representa-
tion of a document, the query finds the documents which yield
a high correlation with this document (a threshold of at least
0.95) using the information obtained on the previous step. The
query is more efficient than the naive linear search, because
instead of going over the set of all documents, its search space
includes only the documents that are proven similar to the
incoming document by the set of hash functions stored inside
the set Hashes.

SELECT m.id FROM Model m,Hashes h,
UnclassifiedDocuments ud,Documents d

WHERE ud.id = 13243
AND DOT(ud.v, h.v) = 1
AND m.hid = h.id
AND m.did = d.id
AND DOT(ud.v, d.v) > 0.95;

C. Music search

In recent years, we have seen an increasing number of
musical services that deal with millions of music files [Bertin-
Mahieux et al., 2011]; such services include Spotify, Apple
Music, Google Music, Yandex Music, Amazon Prime Music,
Shazam, etc. One of the common interfaces to such a service
is searching for a particular music track based on features such
as author, album or title. This metadata, however, is not always
available, so we want more possible queriesfor finding a music
track in such a database.

Two new possibilities come to our mind: the first one is
looking up the song by its lyrics, which can be done by
applying the same math as we did with web search, then
combining the music data and the lyrics data using our query
language, as both music and text can be stored in our polystore.
To summarize, music search can be done in terms of text
search. The second way of performing a music search would
be extracting some vector data from music files [www, 2012]
and storing that data along with music files in our polystore,
making it possible to run Large-Scale clustering on that data
and find similar music tracks [Camastra and Vinciarelli, ].
Locality-sensitive hashing can be used to carry out the task
[Casey and Slaney, 2007] [Casey et al., 2008] [Yu et al.,

2009], along with an abundance of other methods [Camastra
and Vinciarelli, ] [Serrà et al., 2010].

When searching music that is stored within a table based on
vector data, a new clause can be added onto the Select query
called MelodyMatch to retrieve said data. This proximity-
match takes in two arguments: the second is used to match
against the possible melodies contained within the first through
the use of melody extraction. MelodyMatch will evaluate into
a decimal value within the decimal range 0-1 called the voicing
detection : an estimation on whether a melody is present within
the music file. Once a certain threshold has been reached for
the condition (in this case, 0.95), information such as the artist
name, song title, and the ID of the music file can be returned
back from the query.

SELECT Artists, SongTitle, melodyID
FROM wavFiles AS w, singleMelodies AS sm
WHERE MELODYMATCH(w.waves, sm.vector) > 0.95;

Another application of our system to perform a music
search is to extract a group of patterns from a music file
(e.g. using some dimensionality reduction technique such as
Principal Component Analysis [Jolliffe, 2002] or clustering
techniques such as Locality-Sensitive Hashing [Slaney and
Casey, 2008]) and using these patterns to detect similarities
between melodies [Casey and Slaney, 2007] for the purpose
of copyright infringement. One step further would be abstract-
ing such tasks into source-oblivious operators in our query
language.

D. Image and video processing

There are services that accumulate terabytes of images such
as Flickr, Google Photos, Instagram, and Facebook, as well
as public scientific datasets with large amounts of images
[wik, 2017a]. Performing image processing tasks and simple
image searches on these big datasets would prove useful, since
images often contain additional metadata, where text searches
can become applicable which in turn simplifies searches on
images. Storing metadata along with images is enabled by
our architecture. Moreover, some Large-Scale clustering and
Machine Learning can be performed on these large datasets.
Images can be represented as 2-dimensional arrays, and some
image processing operations rely heavily on Linear Algebra
[Gonzalez and Wintz, 1977], however, non-linear routines may
also be used for image processing. Our hybrid query language
has native support for image processing routines, thus making
it possible to process myriads of images at scale [Gubanov,
2017a].

There also exists services which accumulate terabytes of
videos such as Youtube, as well as public scientific datasets
with large amount of videos [wik, 2017a]. Footprinting, classi-
fication, and clustering tasks may be enabled by our universal
query language and universal storage.
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