
Scalable Spam Classifier for Web Tables

Santiago Villasenor, Tom Nguyen, Anusha Kola, Sean Soderman, Michael Gubanov
Department of Computer Science

University of Texas at San Antonio

Abstract—Internet mail spam is a problem for most or-
ganizations and individuals. Spam can be classified into two
categories: fraud and commercial. The fraud category includes
phishing, scams, malware, counterfeit products and any other
criminal activities. The commercial category includes promo-
tional messages and newsletters that we do not want to receive,
being sent illegally from legitimate organizations. Fraud can be
seen as being a high threat with high volume while commercial
spam is the opposite. Similar to mail, there are spam Web
tables that do not have any useful content. Here we describe
our machine-learning classifier for efficient and effective Web
tables spam filtering that was tested on a large-scale Web tables
corpus of ≈ 36 million tables.

Keywords-Web-search; Large-scale Data Management;
Cloud Computing; Data Fusion and Cleaning; Summarization;
Human-Computer Interaction.

I. PROBLEM STATEMENT

Although spam has seen a sharp decrease in recent years
[Kaspersky Lab,], it is still a major problem that stands in
the way of technical and nontechnical individuals alike. For
everyday users, the systems in place for Gmail and MSN
for spam filtering is sufficient most of the time.

However, the cleanliness of data extracted from the Web
itself varies. Not only do many “empty” webpages filled
with advertisements exist, many instances of structured
Web tables with useless or sparse data also exist, presenting
a problem for those who wish to analyze or browse the
data inside of them. An example of this would be if a data
scientist extracted a large-scale corpus of Web tables from
the Internet. For example, if they wanted to use this data
to build a word co-occurence matrix, they would need to
identify the spam in this structure and repeat the analysis of
the dataset with this algorithm after ignoring the spam words
they identified. Eventually, they may come up with a set
of hard-coded rules to remove spam in their dataset. Since
every data scientist would have to do this for each of their
specific applications, the amount of time wasted in total
would be huge. In addition to this, such manual cleaning
of data is error-prone and could still leave spam data behind.

With the above problem in mind, it is necessary to
filter out spam from Web table data. Automatic filtering of
spam data will not only make life easier for the previously
mentioned data scientists, but also for those experimenting
with search over these datasets. Such a tool would need
to be constructed in a different manner than one made for

tasks such as e-mail spam classification, as spam data looks
drastically different. An example Web tables spam follows:

Listing 1. A sample of Web tables spam

"null null null null null null null null null null
null null null null null null null null null
null null null null null null null null 0 ",1

""images" null null null null null "64" "29" "27"
"87" "48" null null "54" "58" "40" "20" "29"
null null null null null null null null null
null null 0 ",1

"quantity display_error_msg_div(na
eventquantity2_msg_10435669);
display_error_msg_div(na
eventquantity2_msg_10435699); ...
display_error_msg_div(na
eventquantity2_msg_10425011);
display_error_msg_div(na
eventquantity2_msg_10435619);",1

" gmb (new) ",1
"arent they cool? ",1
" the record order is not maintained between the

list and form for multiple edit ",1
" 18.30 kevin tunstall 18130 0",1
" nobility found without conceit? |where is

there ",1
" y/c ",1

In Listing I, the data was pulled from several rows of our
Web tables corpus and is sparse with information. This
is much different from the spam common to email and
other media. Thus, a new approach to spam classification
is required in this context.

II. SOLUTION

We used a custom scalable Naive Bayes Multinomial
Text classifier for Web tables spam classification. The
Naive Bayes classifier is a probabilistic classifier based on
the Bayes theorem with strong and naive independence
assumptions. This classifier is very useful in applications
such as email spam detection, personal email sorting, etc.
Another benefit is that the classifier is very efficient for
unstructured and semi-structured data like in Web tables
crawled from the Web. Fortunately, we have a significant
amount of training data from our corpus. This will also
aid in the effort to make the classifier scalable as it will
require less resources with large data sets compared to other
algorithms. We have gathered results from the ZeroR and
Input Mapped Classifier algorithms, but determined that

Figure 1. Training and classification of Web tables spam

our custom scalable Naive Bayes Multinomial performed
better with our current training set.

The training data supplied to the classifier algorithm
is labeled as spam/non-spam. Figure 2 illustrates training
and classification pipeline for Web tables spam.
The algorithm for generating the training data is as below.

1) Execute the listed queries for the positively labeled
training set.

2) Label positively each selected row.
3) Execute the inverse of these queries for the negatively

labeled training set.
4) Lebel negatively each row.

Queries: In a large-scale structured Web tables corpus
with ≈ 36 million tables, we have encountered a significant
amount of spam. After observing certain common patterns,
we came up with the queries that can be used to generate
the spam training data:

• Column1/Attribute1 is not null while the rest of the
columns are null

• The total tuple length is more than 400 characters
• The total tuple length is less than 40 characters
• The entry contained ” ” which means space in

HTML
• Other HTML formatting rules

To apply the above rules to our dataset, we used queries
similar to the one below:

Listing 2. Sample queries generating spam training data
select * from spam_corpus where
len(column2) > 120 and
column3 like ’% %’ and
column4 is NULL and
column5 is NULL and
column6 is NULL and
column8 is NULL

select * from spam_corpus where column2
is NULL and

column3 is NULL and
column4 is NULL and
column5 is NULL and
column6 is NULL and
column8 is NULL

select * from spam_corpus where
len(column2 .. column11) +
len(column13) > 400

select * from spam_corpus where
len(column1 .. column10) < 40)

select * from spam_corpus where column1
like ’ ’ and column2 is null

Figure 2. Number of Spam Tuples vs. the Tuple Length

III. EVALUATION

The graph above illustrates the statistics of the spam
rows that were classified by our trained spam classifier. It
has labeled 21 million rows as spam from the corpus. The
X-axis in the graph provides the length of the spam row
and the Y-axis gives the number of rows observed for the
corresponding length.

We observed 92.2% precision and 91.3% recall using 10-
Fold Cross-Validation. The training set was 54 thousand
rows ≈ 50% positive and 50$ negatively labeled instances.
The detailed evaluation of our custom Naive Bayes Multi-
nomial Text Classifier for Spam is below in tables I , II, and
III.

Performance: We believe that we can further improve
our precision by improving our training sets, re-evaluating
our search criteria, modifying our SQL queries that generate
training data, and evaluating results from multiple machine
learning algorithms. As of now we have increased our
training data to ≈ 55,000 entries.

Table I
OVERALL PERFORMANCE

Metric Value
Correctly Classified Instances 91.3257%
Incorrectly Classified Instances 8.6743%
Kappa Statistic 73.02%
Mean absolute error 11.87%
Root mean squared error 26.9%
Relative absolute error 39.7075%
Root relative squared error 69.5714
Total Number of Instances 54967

Table II
DETAILED ACCURACY BY CLASS

Metric Class 0 Class 1 Weighted Average
TP Rate 86% 92.5% 91.3%
FP Rate 7.5% 14% 12.8%
Precision 72% 96.7% 92.2%
Recall 86% 92.5% 91.3%
F-Measure 78.4% 94.6% 91.6%
MCC 73.5% 73.5% 73.5%
ROC Area 94% 94% 94%
PRC Area 87.5% 98% 96%

IV. RELATED WORK

[Cafarella et al., 2008] developed a system to work with
a large-scale dataset of Web tables from Google web crawl.
The dataset was originally 14.1 billion tables, and mostly
contained non-relational tables such as tables for page
layout, extremely small tables, or tables used for laying
out calendars. They used parsers to remove the 89% of
tables with these properties, afterwards training a classifier
on human-labelled tables containing a large number of blank
cells, simple lists in two dimensions, and tables containing
pairs associating attributes to values.

Here we omit the details of crawling, extracting, and
cleaning up the large-scale Web tables dataset that we have.
We forgo the parsing process completely, opting for queries
we constructed that are highly indicative of spam data in the
corpus. We use a machine-learning classifier to rule out data
with undesirable properties. However, our training data is
composed of the result sets from the aforementioned queries
to train our spam classifier, which contrasts with the human-
labeled sets of data they use for training. In addition to this,
our training set is based on the distribution & sparseness
of content rather than structural properties such as lists or
attribute-value pairs. Finally, their classifier is ruling out
entire tables at a time, while we focus on individual rows.
In this way, we can retain all useful information from tables
that are partially spam.

[Eberius et al., 2015] construct a large-scale dataset sim-
ilar to [Cafarella et al., 2008], the key difference being that
they focus on classifying the layout of web tables in order
to improve the amount of web tables recovered from the
Web. This is important because many papers that focus on
the task of Web table detection assume that web tables are
structured in the same manner. That is, tables are laid out

Table III
CONFUSION MATRIX

n = 54957 Predicted as 0 Predicted as 1
Actual 0 8648 1409
Actual 1 3359 41551

as 2-dimensional structures with attribute-column headers
and relations under them, similar to a table in a relational
database.

While the layout of web tables in our own corpus may
vary, we focus primarily on the content of tables rather
than their structure. Our goal of identifying spam tables is
also different from the objective of finding tables stored in
nonstandard ways.

[Ntoulas et al., 2006] focus on the task of identifying
spam web pages. They mention two techniques, link stuffing
and keyword stuffing as ways some website owners might try
to increase the rank of their websites. Link stuffing is the
practice of creating web pages with many links to a page
they wish to be ranked more highly. Keyword stuffing is
where website creators place extraneous words, sometimes
in large amounts, in certain parts of a web page. They focus
on content-based heuristics such as the number of words in
the title, as well as average word-length on a page.

Although link stuffing has no analog in the context of
web tables, keyword stuffing is something that we could
have considered during our work on this project. However,
it cannot be said that tables containing a large number of
even the same word are necessarily spam. For example,
a historical table documenting several women with the
title “lady” may be identified as spam in the context of
web pages. These titles are likely necessary as they could
disambiguate these people from others with the same name.
Since the context of relational web tables is different from
that of Web search, we had to identify several different spam
criteria from web table data such as the data in Listing 1.

REFERENCES

[Cafarella et al., 2008] Cafarella, M. J., Halevy, A. Y., Zhang, Y.,
Wang, D. Z., and Wu, E. (2008). Uncovering the relational web.
In WebDB.

[Eberius et al., 2015] Eberius, J., Braunschweig, K., Hentsch, M.,
Thiele, M., Ahmadov, A., and Lehner, W. (2015). Building
the dresden web table corpus: A classification approach. In
Big Data Computing (BDC), 2015 IEEE/ACM 2nd International
Symposium on, pages 41–50. IEEE.

[Ntoulas et al., 2006] Ntoulas, A., Najork, M., Manasse, M., and
Fetterly, D. (2006). Detecting spam web pages through content
analysis. In Proceedings of the 15th international conference
on World Wide Web, pages 83–92. ACM.

[Kaspersky Lab,] Kaspersky Lab. Global spam volume as per-
centage of total e-mail traffic from january 2014 to september
2017, by month. Statista. Accessed 15 Nov 2017.

