
Hybrid.media: High Velocity Video Ingestion in an In-Memory Scalable Analytical
Polystore

Mark Simmons, Daniel Armstrong, Dylan Soderman, Michael Gubanov
Department of Computer Science

University of Texas at San Antonio

Abstract—Recent advances in image recognition algorithms
are making it possible to query databases for static images
which look like a desired target image. This technology is
expanding to image recognition within video files as image
recognition algorithms advance. Blending the ideas of static
image query with video image recognition leads to the subject
of our present work. Hybrid.media is our work in progress
to ingest video files into an Hybrid In-Memory Polystore
Database [Gubanov, 2017], [Podkorytov et al., 2017] and add
query support for finding those video files. This work will
provide the basis for future work to query videos containing
specific items based on content in a video.

Keywords-Video-search; Image recognition; Large-scale Data
Management; Data Fusion.

I. PROBLEM STATEMENT

Implementing a database which is capable of storing
and managing various formats of data ranging from
audio, text, unstructured or unstructured data, videos, and
other assortments has been an ongoing task in the field
of Database Management Systems [Gubanov, 2017],
[Gubanov et al., 2009], [Gubanov et al., 2011],
[Gubanov et al., 2014], [Gubanov and Stonebraker, 2014],
[Gubanov et al., 2009], [Gubanov and Pyayt, 2013]. For
video files, they have traditionally been difficult to store in
databases because they are large and have variable file-sizes,
making them not the best fit for standard relational database
engines and query languages. In addition, video storage
and retrieval is relatively slow because of disk Input/Output
(I/O) when not stored in memory. Traditional databases
also lack automated content analysis functionality.

A conventional workaround for this is by not actually
storing video files but instead storing a file system path
to a video file in the database. This practice however is
insufficient for video indexing or for inclusion in database
backups. Traditional implementations also do not allow
querying video files based on image recognition algorithms
to find desired content. Absent tagging or other meta-data
fields are required in order to provide information about
video content.

The current standard practice for storing video in
databases does not involve putting in the binary files.
Instead, video files are stored on the file-system
and a path to that file gets stored in the database

[Gilboa-Solomon and Yehudai, 2009], []. The up-side of
doing this is that databases do not become bloated with
huge files, but the downside is that the content of the
video is non-searchable, unless additional meta data is
also stored along with each file path. It is also possible to
store the binary video file as a binary large object (blob)
[Miller et al., 2015] in most modern relational databases. A
few reasons to take this approach are to take advantage of
transactional commits and rollbacks, preventing orphaned
video files, and having backups include video files.
However, this is generally viewed as an inefficient use of
relational database functionality. In addition, video files
differ in size which makes determining the column width
difficult to manage. Binary files are more complicated to
serve through a web page, and cloud storage also is not an
option.

In-memory databases however, have the benefit of having
much faster data access than disk-based databases. As RAM
prices continue to drop, it is becoming increasingly econom-
ical for video and other large data objects to be stored in
memory rather than on disk. However, there is a risk of
data loss in the event power is interrupted since Random
Access Memory (RAM) is typically volatile. Regardless,
in-memory databases are growing in popularity with 59
different Hybrid.media applications listed on Wikipedia’s list
of in Memory Database page, 2017[Wikipedia, ].

II. SOLUTION

Because of modern advances in memory technology
[Perry, ], we can have the contents stored in an in-memory
database. The particular in-memory database we use within
this project is an hybrid-in-memory polystore database -
Hybrid.media, a part of [Gubanov, 2017] which is currently
configured with 1 TB of RAM and supports SQL-like
queries to access data in a fast, highly-parallelized and scal-
able fashion. It allows partitioning across multiple machines,
which in turn enables multiple nodes to work on data in a
fast and efficient manner. This opens the door to future works
which will be detailed under the Future Plans section.

We have added an additional feature to Hybrid.media
to enable storage of large sets of video data. With the
file readily available in memory at all times, any analysis
or processing on the video file would skip the file read



Input/Output delay. A scalable, in-memory database engine
allows rapid ingestion and analysis of numerous videos
simultaneously for enterprise or security purposes. It also
has the ability to ingest large quantities of data in the Load
command. Here we describe our extensions to this load
command to work with all types of video file formats. To
properly store large amounts of data in memory, we have
developed a ByteArray64 Java object which abstracts the
task of storing bytes that would exceed the upper bound
limitation of integer array types in Java.

This object abstracts a 64 bit indexed array through
use of a two-dimensional byte array where the first index
indicates the starting gigabyte and the secondary index
indicates which byte within that gigabyte. More formally,
for an array A, primary index i and secondary index j the
reference Aij refers to byte (i ∗ 230) + j.
This object can be constructed using a FileInputStream
object and will fill itself with the data from the given file.
It can also write itself to a file in the same way. Perhaps
the most powerful use of the ByteArray64 is it’s ability
to seamlessly return a byte array containing any range of
its data that can fit into a single byte array. This allows it
to be read in chunks to increase performance.

III. ARCHITECTURE

1) Video Ingestion: Using a previously implemented
load command which is used to store csv files in memory,
we adjust it with the following syntax in our database shell:

"LOAD /<region name>
’<file path>’ ’delimiter’ ’Mode’"

Where we have added an mode parameter which specifies
a video file, the program checks for the file and reads it. This
ingestion will take the binary data of the video file and store
it as a single Java object onto a specified region, which acts
as a relational data-table.

2) Query Support for Video Files: Retrieval of stored
video files from a region is handled in the same way all other
select queries are done in Hybrid.media [Gubanov, 2017].
For example, from extracting metadata and storing them in
their appropriate attributes, the following query can be done:

"SELECT name FROM /region"

Where “name” is the title of all videos, taken from the
region.

3) Metadata Extraction During Ingestion: In order to use
a video’s metadata in the database, the database must extract
it from the video file. Our project may include logic to
extract metadata after reading the video file into memory,
before storing it. Video metadata is stored in many formats,
differing per file format such as ”.mp4”, ”.avi” and ”.mpg.”
Supporting any file format could be considered a secondary

task, though adding more supported formats in the future
would be useful.

4) Store metadata along with video: Once metadata about
the video has been extracted, the VidObj object can be
modified to store this additional metadata along with it is
current fields, and it can easily be recalled at a later point.

5) Query video based on metadata: With the metadata
extracted and stored, our project must then add functionality
to account for queries based on pieces of video metadata,
not simply on the file metadata created initially to satisfy
our primary goals.

IV. EVALUATION

Small videos do not vary much in processing velocity,
though with larger videos over multiple Gigabytes there
is noticeable difference in ingestion speed. This ingestion
velocity does not scale linearly with video size, as shown
in the averaged trials below.

A. Video Processing Comparison

To test the efficiency of our VidObj object for processing
videos, we compared it against reading videos directly
from a file. We ran several trials reading a sample video
of ∼ 2.4 Gigabytes, running a simple hashing algorithm
on 100 Megabyte chunks of the file and then averaging
the milliseconds for several of these trials. All trials were
completed on a standard hard disk and DDR3 RAM and the
hard drive read cache was flushed between every trial.

As expected, reading the entire file into the VidObj
object initially and then processing the data took slightly
longer than just processing the file directly, though taking
less than 7% longer on average. The trials using a previously
loaded VidObj was processed significantly faster - in under
5% of the time it took to process the same video from a file.

V. FUTURE PLANS

To further our currently existing implementation of video
ingestion, we plan on extracting additional metadata. Users
could specify query conditions based on metadata about the



video. This metadata may include resolution, framerate or
video format.

Ingestion can work with various forms of data video-
formatted information. With future development beyond the
scope of this project, the program could apply machine
learning algorithms during the ingestion of a video file and
store derived data about the video in the database as well.

With video ingestion enabled in Hybrid.media, there are
certain processes that are capable of being implemented,
especially in context with Hybrid.media at our disposal.
Such implementations include image processing, identifica-
tion, and retrieval through the use of deep-learning algo-
rithms [Wang and Sng, 2015]. The practical use of this is
vast, where CPU-intensive jobs that are usually associated
with training and predicative information can drastically
decreased.

Querying can also involve the use of video-frames
[Ide, 2009], or segments of video that resemble other frames
contained in an alternate video. With in Hybrid.media and
its ability to handle complex analytical queries, it is even
feasible to carry out frame-by-frame video analysis. Another
computationally-intensive technique that can be done on
real-time can be Dynamic Time Warping (DTW) which
utilizes “comparison of a query video frame to multiple
(usually a fixed number of frames after the frame matched
in the previous iteration) reference video frames”. Such an
application can help for copyright infringement, advertisers,
and general video-duplication retrieval.

Video repair [Shao et al., 2011] for incomplete entries on
a video-dataset is also a viable path. As data and information
becomes more unstructured and varied in format, so too
can the potential loss of information contained in said data.
Neighboring videos that yield similarity (such as being a
part of a series) could also be used to repair associated
episodes or sequels to the standard, higher quality exhibited
in other videos [Romano et al., 2016]. Training data like this
can help resolve the ”Single Image Super-Resolution (SISR)
problem as described in the aforementioned paper.

Future improvements to video ingestion will also involve
additional details derived from the video binary such as
file format (e.g. MP4) or other content metadata for use
in analysis.

VI. RELATED WORK

Google has a recent test product that performs image
search by looking for an image within a video using an
image to start with. At the Cloud Next event in San Francisco
March 2017, Google unveiled its Cloud Video Intelligence
API. The tool, which is currently available to developers
in a closed beta, analyzes videos to make their contents
searchable. ”With the tool, you can search one or more
videos using keywords and get back a list of results showing
you where in the video you can find the objects relevant to
your search terms.”[Karissa Bell, ].

REFERENCES

[Gilboa-Solomon and Yehudai, 2009] Gilboa-Solomon, F. and
Yehudai, Z. (2009). Virtual video clipping and ranking based
on spatio-temporal metadata. US Patent App. 11/946,067.

[Gubanov, 2017] Gubanov, M. (2017). Polyfuse: A large-scale
hybrid data fusion system. In ICDE.

[Gubanov et al., 2009] Gubanov, M., Popa, L., Ho, H., Pirahesh,
H., Chang, J.-Y., and Chen, S.-C. (2009). Ibm ufo repository:
Object-oriented data integration. In VLDB.

[Gubanov and Pyayt, 2013] Gubanov, M. and Pyayt, A. (2013).
Readfast: High-relevance search-engine for big text. In ACM
CIKM.

[Gubanov et al., 2011] Gubanov, M., Pyayt, A., and Shapiro, L.
(2011). Readfast: Browsing large documents through unified
famous objects (ufo). In IRI.

[Gubanov and Stonebraker, 2014] Gubanov, M. and Stonebraker,
M. (2014). Large-scale semantic profile extraction. In EDBT.

[Gubanov et al., 2014] Gubanov, M., Stonebraker, M., and Bruck-
ner, D. (2014). Text and structured data fusion in data tamer at
scale. In ICDE.

[Ide, 2009] Ide, I. (2009). Video Querying, pages 3292–3296.
Springer US, Boston, MA.

[Karissa Bell, ] Karissa Bell, Mashable March 8, . A new
google tool actually lets you search videos for specific objects.
http://mashable.com/2017/03/08/google-video-intelligence-api/
#he42dnXvM8q1/. Accessed November 03, 2017.

[Miller et al., 2015] Miller, M., Boedigheimer, C., Whiteford, D.,
and Chandrasekaran, A. (2015). Manipulating binary large
objects. US Patent 9,112,935.

[Perry, ] Perry, M. J. Chart of the day: The falling
price of memory. http://www.aei.org/publication/
chart-of-the-day-the-falling-price-of-memory/. Accessed
November 05, 2017.

[Podkorytov et al., 2017] Podkorytov, M., Soderman, D., and
Gubanov, M. (2017). Hybrid.poly: An interactive large-scale
in-memory analytical polystore. In ICDM DSBDA.

[Romano et al., 2016] Romano, Y., Isidoro, J., and Milanfar, P.
(2016). RAISR: rapid and accurate image super resolution.
CoRR, abs/1606.01299.

[Shao et al., 2011] Shao, L., Zhang, H., Wang, L., and Wang,
L. (2011). Repairing imperfect video enhancement algorithms
using classification-based trained filters. Signal, Image and
Video Processing, 5(3):307–313.

[Wang and Sng, 2015] Wang, L. and Sng, D. (2015). Deep learn-
ing algorithms with applications to video analytics for a smart
city: A survey. arXiv preprint arXiv:1512.03131.

[Wikipedia, ] Wikipedia. List of in-memory databases. https://
en.wikipedia.org/wiki/List of in-memory databases/. Accessed
November 04, 2017.


