
Hybrid.JSON: High-velocity Parallel In-Memory Polystore JSON Ingest

Steven Ortiz, Caner Enbatan, Maksim Podkorytov, Dylan Soderman, Michael Gubanov
Department of Computer Science

University of Texas at San Antonio

Abstract—Hybrid.poly is an in-memory polystore data man-
agement system, able to ingest various kinds of data and
run complex analytical workloads on the ingested data
[Gubanov, 2017], [Podkorytov et al., 2017]. Hybrid.JSON, a
part of [Gubanov, 2017] focuses on ingesting and querying
JSON documents in the polystore.

Keywords-Large-scale Data Management; Cloud Computing;
Summarization; Human-Computer Interaction.

I. PROBLEM STATEMENT

Variety of Big Data is one of the key characteristics that
make it difficult to process and analyze. This property is
defined by the large number of types of data that exist in the
wild. The examples of such data types are relational tables,
web pages, XML documents, JSON documents, graph data,
binary data retrieved from sensors, streams of messages in
social networks, audio and video files. The classic data man-
agement engines are usually best optimized for relational or
semi-structured data.

The JSON data model organizes data into a lightweight
format[json.org, 2017] having a tree-like structure where
internal nodes are either javascript objects or arrays of
objects, and leaves are atomic values, such as strings
and numbers. Some large-scale storage engines, such as
MongoDB[MongoDB, 2017], support this model. However,
all of the existing the data is not limited to this format,
so many popular databases miss the boat when it comes to
accommodating a variety of different data formats.

Hybrid.poly [Gubanov, 2017], [Podkorytov et al., 2017]
aims to support ingestion and querying data of different
data formates from a variety of data sources. Hybrid.poly
focuses on the facet of scalable JSON document ingestion
and querying.

II. SOLUTION

A. Ingestion

The underlying storage of the polystore is a high-
performance distributed in-memory key-value store written
in about 1 million lines of Java. Before our work, the storage
supported loading relational data from CSV files. If a user
wants to ingest the contents of a csv file file-name.csv into
an in-memory dataset /collection-name, they issue a query
of the following format:

LOAD /collection-name ’file-name.csv’

To support ingestion of a JSON document into the stor-
age, we take the following approach. First, we modify the
existing query statement that performs the loading of the
document into the storage by adding an extra parameter that
designates the type of data being loaded. As a result, if a
user wants to ingest the contents of file-name.json into an
in-memory dataset collection-name, they issue a query of
the following format:
LOAD /collection-name ’json’ ’file-name.json’

Figure 1. A generic schematic illustrating loading of a JSON document

Then, we serialize the JSON document into a Java object,
so that the system can store it, send it over the network
to other members of a distributed system. The persistence
of in-memory objects on disk is another benefit enabled by
serialization. When we load the JSON document into the
key-value storage, we choose to use the absolute path to the
loaded document as a key and the Java counterpart of the
JSON document as a value. This seems to be intuitive, as the
path to a filename is unique on a same filesystem, however,
when this system is exposed to users on multiple hosts, we
will incorporate the information about the host name into a
key to keep the key unique.

As an initial approach, we chose to use the org-
json[Crockford, 2017] parser. In this approach, we also
developed our own set of Java classes to fix the API that
reflects the structure of JSON documents, mapping them to
Java objects. Having the mapping fixed allows to implement
the storage without concerns of the API provided by the
parser. We developed the mapping as a separate application
to enable rapid development, testing and benchmarking, and
we integrated it into the polystore as well.

The class hierarchy of the mapping is as follows. The root
type, JsonType, is extended by JsonObject, JsonArray and
JsonPrimitive. A JsonObject contains a map of keys of type
String to values of type JsonType; a JsonArray contains a list
of values of type JsonType and a JsonPrimitive contains an
atomic value. Figure 2 depicts the class diagram illustrating
the mapping of JSON documents into Java objects.



Figure 2. Class diagram illustrating how JSON objects map to Java objects

As a result of our efforts, users can load entire JSON
documents into memory and perform basic queries on
them very rapidly. For example, a user may issue 3
loading queries followed by a select-everything query:

LOAD /test-dataset ’json’ ’sample1.json’
LOAD /test-dataset ’json’ ’sample2.json’
LOAD /test-dataset ’json’ ’large.json’
SELECT * FROM /test-dataset

The result of the queries is displayed in Table I. Currently,
we display a brief summary of each document.

summary path
JsonObject containing 8 element(s) [...]/sample1.json
JsonArray containing 6 element(s) [...]/sample2.json

JsonObject containing 200000 element(s) [...]/large.json

Table I
WILDCARD QUERY RESULTS AFTER LOADING THREE DOCUMENTS

As we progressed with the JSON ingestion module, we
discovered, that using our mapping, while being conve-
nient, introduces performance and memory overhead. Us-
ing the org-json parser did not allow us to ingest the
documents with the number of keys greater than 226.
Given the amount of memory on the test machine, we
attribute this to the parser limitations. Another JSON parser,
Jackson[FasterXML, 2017], performed better on large doc-
uments, although it did not allow us to ingest the doc-
uments with number of keys greater than 227, making an
improvement of only one binary order of magnitude. We
have evaluated the org-json parser with the mapping, the
org-json parser without the mapping and the jackson parser
in Section III.

B. Querying

The polystore answers the users’ queries in a dialect of
SQL extended with java objects’ properties traversal. This
traversal is specified with a common in OOP languages dot-
notation of accessing the object’s properties. For example,
the following listing declares the class Employee, imple-
menting the Serializable interface to store the objects of that
type in our storage engine.

class Employee implements Serializable {
public String name;

public Integer id;
public Date birthday;
// implementation details omitted
// ...

}

If a dataset employee-set contains Java objects of type
Employee, it is possible to query all of the names by running
the following query:

SELECT e.name FROM /employee-set e

Furthermore, in case of nested objects, a user may chain
the attributes using a dot notation. For example, a dataset
jobs-set contains objects of type Job declared in the follow-
ing listing.

class Job implements Serializable {
public String name;
public Integer id;
public Employee employee;
// implementation details omitted
// ...

}

The names of all employees associated with jobs are
accessible with the following query:

SELECT j.name, j.employee.name
FROM /job-set j

As the polystore provides us with this querying function-
ality, and the JSON documents are inherently recursive, it is
possible to extend it to be able to query the JSON objects.
For example, here is a fragment of a JSON document that
contains the web pages:

{
"blog": {

"posts": [...],
...

},
...

}

We plan to further improve native support for querying of
JSON documents as follows. If a user wants to access the
first blog post in the document, they will issue the following
query:

SELECT d.’blog’.’posts’.0 FROM /document d

Enclosing the keys within single quotes enables keys
that contain spaces and dots. Furthermore, having some
properties quoted allows us to distinguish between keys and
array indices, as we did in the posts-retrieving query.

III. EVALUATION

The architecture of our solution allows to use different
JSON parsers and compare their performance. We generated
a set of documents, each of the documents contains a large
number of key-value pairs, having integer keys and string
values. We evaluated the ingestion of each document in three



Figure 3. Comparison of ingestion speed using 3 different approaches.
The green line corresponds to the org-json parser without mapping step, the
orange line corresponds to the org-json parser with mapping step, the blue
line corresponds to the jackson parser without mapping step. The x-axis
shows the number of keys in the upper level of the JSON document. The
document is a generated array of key-value pairs.

scenarios: using the org-json parser with mapping step en-
abled, using the org-json parser with mapping step disabled,
and using the jackson parser with mapping step disabled. For
each of the documents and evaluation scenarios we ran 10
tests to account for randomness, the detailed results for org-
json and jackson parsers with the mapping step disabled are
shown in Tables II and III. The Figure 3 shows the average
running time between the 10 runs for each of the documents
and evaluation scenarios. As we can see from the figure,
having the mapping enabled makes performance worse. We
can also see that the org-json parser performs better than
the jackson parser on smaller documents, while it performs
worse on bigger documents. The ingestion was evaluated on
a server with 4 Intel R© Xeon R© E7-4870 CPUs, 80 2.40 GHz
cores and 320 GB of RAM.

Keys Size Mean(ms) Min(ms) Max(ms)
222 79.76M 5940.83 5347.95 6298.94
223 163.76M 21499.28 17296.87 23480.38
224 331.76M 69825.22 60022.25 123813.93
225 693.61M 131854.24 113760.88 167162.22
226 1.40G 389190.08 327658.00 476184.90
227 2.83G - - -

Table II
THE RESULTS OF RUNNING INGESTION OF GENERATED DOCUMENTS,

USING THE ORG-JSON PARSER, SKIPPING THE MAPPING STEP,
SAMPLING 10 TIMES FOR EACH DOCUMENT

IV. FUTURE WORK

Implementing the JSON documents ingestion left a few
questions unanswered, and we plan to investigate them in
our future work. Improving native support of querying JSON
documents is our top priority. Summarizing the JSON docu-
ments is a challenge, as documents can be arbitrarily nested.
Key search within a document can also be implemented in

Keys Size Mean(ms) Min(ms) Max(ms)
222 79.76 M 3071.76 2867.40 3339.36
223 163.76 M 7343.85 5826.80 12351.58
224 331.76 M 19330.26 15867.73 22102.52
225 693.61 M 51148.33 45644.97 58369.97
226 1.40 G 108248.99 97224.47 144191.34
227 2.83 G 273743.91 216575.40 413781.20

Table III
THE RESULTS OF RUNNING INGESTION OF GENERATED DOCUMENTS,

USING THE JACKSON PARSER, SKIPPING THE MAPPING STEP, SAMPLING
10 TIMES FOR EACH DOCUMENT

a way similar to XQuery[Chamberlin, 2003]. Investigating
how the JSON ingestion performs on documents with com-
plex structure is an interesting direction as well. Finally,
implementing joins with relational data stored in the engine
is also an attractive option.

V. RELATED WORK

MS SQL Server enables storing and querying both rela-
tional and JSON data[Microsoft, 2017]. Hybrid.poly is using
the distributed in-memory storage.

Multiple data format support is the selling point of the
polystores, the systems that enable storing and querying het-
erogeneous data coming from different sources with differ-
ent data models[Gubanov, 2017], [Podkorytov et al., 2017].
The JSON data format is supported by several engines, for
example MongoDB[MongoDB, 2017] is a popular large-
scale JSON storage engine.

REFERENCES

[Chamberlin, 2003] Chamberlin, D. D. (2003). Xquery: A query
language for xml. In SIGMOD Conference.

[Crockford, 2017] Crockford, D. (2017). Online: Maven reposi-
tory: org.json — json.

[FasterXML, 2017] FasterXML (2017). Online: Fasterxml/jack-
son: Main portal page for the jackson project.

[Gubanov, 2017] Gubanov, M. (2017). Polyfuse: A large-scale
hybrid data fusion system. In ICDE.

[json.org, 2017] json.org (2017). Online: Json.

[Microsoft, 2017] Microsoft (2017). Online: Json data (sql server)
— microsoft docs.

[MongoDB, 2017] MongoDB (2017). Online: Mongodb for giant
ideas — mongodb.

[Podkorytov et al., 2017] Podkorytov, M., Soderman, D., and
Gubanov, M. (2017). Hybrid.poly: An interactive large-scale
in-memory analytical polystore. In ICDM DSBDA.


