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I. INTRODUCTION

The big data era brought us petabytes of data together
with the challenges of storing and efficiently accessing large-
scale datasets. However, it unexpectedly surprised everyone
with an enormous variety of data sources and types, and
corresponding different data models. Dealing with a variety of
those data models turned out to be a “hard nut to crack™ for
almost all existing data management engines. Data integration,
a mature field addressing problems of accessing and fusing
data residing in more than one datasource, over the years
came up with feasible semi-automatic solutions, most of which
efficiently handle a handful of data sources represented in
one or two different data models (e.g. relational and semi-
structured) [Haas et al., 2005], [Gubanov et al., 2008]. While
this is significant progress, most of the solutions do not
easily scale up, since they usually require some sort of
human assistance, infeasible at scale. Unified Famous Ob-
ject (UFO) [Gubanov et al., 2009], [Bellahsene et al., 2011],
[Gubanov et al., 2011a] was one of the first attempts to crack
data fusion at scale by introducing a new abstraction called
UFO that could incrementally learn different representations
of data objects in different sources, and, over time, train itself
to recognize and map them with high accuracy without super-
vision. Having trained many such UFOs, the system would get
more and more powerful, as it learned to recognize and access
data objects across many sources without supervision. While
UFO was definitely progress towards scaling up data fusion,
it was not a “silver bullet”, because it was built mostly for
relational data. Hence, there is a need for a new large-scale
data integration system that could handle many types of data
at scale. This paper sketches its architecture, and envisions
potential research challenges. First, a few key principles that
such a system should follow are described, then follows the
discussion on architecture and research avenues.

Data Acquisition: Ingest any incoming data for further
classification and processing
No Schema: Incoming data does not need to fit a pre-defined
schema. Instead the schema is extracted from data if needed
Scale: Designed to accommodate and process large-scale
heterogeneous data sets. For example, a fire hose of high-
velocity sensor data or unstructured discharge reports from a
hospital

Seamless Data Fusion: Unsupervised, source-oblivious
fusion at scale to satisfy the user query

“Esperanto“ Query Language: A hybrid query language
enabling access to different data models used by heterogeneous
data. It might be a result of partial composition of several query
languages or a new language designed based on a common data
model.

The first principle sets POLYFUSE apart from a traditional
group of DBMSes that were built for relational data models
and were around for decades [Stonebraker et al., 1996]. The
second principle removes a traditional requirement of data to

“obey” a pre-defined schema in order to get into a database.
The third principle means the architecture should be designed
to support very large heterogeneous datasets from the very
beginning. The fourth and fifth principles indicate that due
to scale, any fusion algorithms should be unsupervised and
any query language should be compatible with different data
models in POLYFUSE.
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II. ARCHITECTURE

The POLYFUSE candidate architecture is depicted in
Figure 1. The incoming data are automatically classified by
type and ingested by the corresponding datastore that handles
a data type. The user queries are processed by the Query
Processor. It takes a query and answers it by using
previously fused and cached data in the in-memory store, if
such data is fully or partially unavailable, it reformulates the
query into several queries, possibly in different languages,
and submits them to the original data stores referenced in the
query. Next, let us discuss the components from Figure 1 in
more detail.

Large-scale Storage Engines/Raw Stores These data stores
ingest and store original, raw data from incoming data
sources, after their classification by type.

Relational: This is a classic relational row-store (e.g.
PostgreSQL [pos, ]) or a column-store (e.g. Vertica, C-Store
[ver, ], [Stonebraker et al., 2005]) that is used to store, index,
and query structured data with SQL [Codd, 1983]

Array Store: This is a data management system to store,
index, and query high-dimensional matrices and vectors
(e.g. SciDB [sci, ]). It is called an array-store because it
uses an array data model to represent matrices and vectors,
and executes linear-algebra operators on these data (e.g.
matrix-vector multiplication, see [sci, ]). However, it also
can be an engine, supporting linear algebra via another
data model, not necessarily arrays. For example, Hybrid
[Gubanov et al., 2016], [Gubanov, 2017] supports matrices



and vectors as attributes of relational tables and allows native
in-SQL support of linear algebra operators.

Stream Processing: This is a large-scale stream processing
engine (e.g. Borealis [Abadi et al., 2005]) that processes
streaming data and queries over them. For example, a data
stream might come from a heart-lung machine carrying
real-time information about blood oxygenation during heart
surgery. The query on such data could perform a real-time
Fourier transform to generate an alert if the patient is in
danger.

Semi-Structured: This is a sharded JSON store or a
distributed data management system with native XML and
XQuery support (e.g. IBM DB2 pureXML [db2, ]). These
can be used to store, index, and access big volumes of
semi-structured data. Unstructured data, such as text from
a Web page, can be stored as well, after being parsed by a
domain-dependent or domain-independent Natural Language
Processing (NLP) parser [Gubanov and Bernstein, 2006].
A parser should be capable of identifying and extracting
objects, their properties, and relationships from text. After
that, the original text is no longer unstructured, because it
is enriched by this new extracted metadata. It can be stored
in a semi-structured store and accessed via a semi-structured
language, such as JSON or XQuery. Similarly, other types
of unstructured data, such as images, video, binary data
streams, can be enriched with metadata using a custom
metadata extractor, and stored in a semi-structured store
[Gubanov, 2017].

In-memory store: This is a large-scale in-memory
engine (e.g. VoltDB, MemSQL, Spark [mem, ],
[Zaharia et al., 2010]) that stores global integrated schemas,
fused by the large-scale schema integration and data fusion
module described below.

Large-scale Information Extraction Engine

NLP Parser can be domain-dependent or domain-
independent. The domain-dependent parser processes text and
automatically identifies and tags a fixed set of objects/entities
from that domain. For example, a medication tagger
would parse Electronic Health Records (EHR) and tag all
medications.

Deep or shallow Natural Language Processing (NLP) parsers
[Klein and Manning, 2007] can enrich plain grammatical text
with certain tags, indicating Part-Of-Speech, Part-Of-Sentence,
and other linguistic information. It can be used to develop or
train a domain-independent parser that can identify objects
in text, just like a domain-dependent parser does for a fixed
domain, but now without a domain restriction.

In both cases, unstructured raw text is enriched with additional
metadata (tags), which turns it into semi-structured data. It
can be stored in a semi-structured store described above and
accessed using JSON or XQuery query languages that will
leverage additional metadata. For example, a user would be
able to retrieve all countries from text, which is impossible
without one of these parsers.

Metadata extractor can be software that reads metadata
attached to an image or video file, or processes a video file
to generate a script of what is being discussed in the video.

Crowdsourced extractor can use crowdsourcing to extract
metadata that is otherwise impossible to extract.

Large-scale Schema Integration/Data Fusion Engine

Schema Integration: This module is responsible
for schema integration of metadata already present

in structured data or extracted from unstructured data
[Priya et al., 2017]. It includes consolidation and unification
of schemas [Gubanov et al., 2008], [Haas et al., 2005],
[Melnik et al., 2003], [Bollacker et al., 2008], before
sending them to the query processor, so the user can
query the global integrated schema [Gubanov et al., 2009],
[Gubanov et al., 2011b], [Gubanov et al., 2008].
Transformation/Cleaning: Data cleaning is essential when
handling large-scale data [Chu et al., 2015]. Text, tables, or
any other data that are created by humans naturally contain
misspellings, refer to the same objects differently, and have
inconsistencies. For example, Mcrsoft is a misspelling
of Microsoft and a data cleaner should be able to
recognize and associate Mcrsoft with a correct data object
automatically.
Query Processor accepts a user query and processes it
via an in-memory store with cached data and an integrated
global schema. If this is not possible, it reformulates and
forwards the query in whole or in part to the raw stores.
Then, it merges responses from different engines to output a
fused query result. This component is conceptually similar
to mediators in P2P data management, although developed
mostly for structured data [Tatarinov et al., 2003].

III. RELATED WORK

Polystores are relevant systems in that they also aim to
store different kinds of data in a distributed fashion. Our
focus here, however, is on significant challenges of data
fusion, information extraction, data cleaning, given a variety
of large-scale data sources in the big data era. Polystores
also mention these research areas, but nevertheless are much
more focused on high performance query processing and
query optimization questions in a distributed setting, rather
than on heterogeneity of large-scale data and consequent
challenges. The work on distributed databases is also relevant
to POLYFUSE. Federated relational databases were around for
decades and were designed to store and query distributed
structured data [Stonebraker et al., 1996], [Haas et al., 2002],
[Haas et al., 2005].

Much research addressing variety of data was historically
done by the data integration research community. It is a
rich research area with significant research contributions
[Melnik et al., 2003], [Haas et al., 2005], [Haas et al., 2002],
[Madhavan et al., 2005]. While this work represents signifi-
cant progress, most of the solutions focus only on structured
or semi-structured data, and most of them require a human
in the loop, which is infeasible for a large number of data
sources. Dataspaces introduced a pay-as-you-go data integra-
tion approach that postponed labor intensive integration until
absolutely needed (e.g. at query time), but similarly suffer from
such problems and lack large-scale adoption.

UFO Repository [Gubanov et al., 2009] was one of the first
unsupervised solutions to challenge large-scale data integration
in structured and semi-structured data worlds. It introduced
a higher-level abstraction, the Unified Famous Object
(UFO), and leveraged it to automate and scale data integration.
In the same way that a Java Object hides implementation
details behind its interface, a Unified Famous Object conceals
data representation differences in different data sources. A
large collection of UFOs simplifies data access and integration
by automatically recognizing objects in the incoming data



feeds and offering a standard query interface oblivious of the
source schemas. Finally, UFOs are more general and flexible
than schemas in the sense that they can be viewed as abstract
building blocks for metadata-intensive applications.

There are several important properties that distinguish UFO
repository from other data integration solutions. Neither
data warehousing, ETL, nor schema or ontology match-
ing [Hernandez et al., 2008], [Rahm and Bernstein, 2001],
[Madhavan et al., 2005] attempt to introduce a common ab-
straction and leverage it to raise the level of automation. In
some sense, those approaches are less general in that they put
main efforts on the specifics of data mapping and transfor-
mation and are built for specific query languages, schemas,
ontologies, or data formats. In contrast, UFO crystallizes a
higher-level abstraction that conceals the lower-level represen-
tation details.

Compared to UFOs, traditional schemas lack modularity,
standardization, ability to automatically learn from data, and
reusability. This difference is substantial and can be compared
to a difference between functional and object-oriented pro-
gramming. UFO, as one of the scalable data integration tech-
nologies, can be used inside the data integration component of
POLYFUSE.

IV. RESEARCH CHALLENGES

Information Extraction

Scalable extractors and taggers are needed to identify and
extract objects from unstructured data, such as text, images,
and video. For example, for plain text, this task is often
performed by a domain expert, having sufficient knowledge
of the area, in order to identify and correctly tag entities and
their types. The discussion below relates mostly to plain text,
however, some of the challenges are very similar for video and
images.

Domain-dependent information extraction is concerned with
the problem of tagging entities, their properties, and relation-
ships in a document or data file from a specific domain. For
example, for discharge reports from a hospital of a patient who
underwent cancer therapy, a nurse would be able to read the
report and identify/tag the medications used for treatment. The
same nurse would most likely be unable to do the same task
of entity tagging in a different domain, unless she happens
to have sufficient domain knowledge. Even within the same
medical domain, outside the cancer sub-domain the accuracy
of her tagging might degrade. This example demonstrates
that on a small scale, within the same domain, the task of
information extraction can be performed by a human. A human
can be substituted by a domain-dependent extractor, usually
a machine-learning classifier, trained to identify a specific
entity type, for example, medications. Accuracy of such a
tagger can be sufficiently high to substitute a human (more
than 95% [Gubanov and Stonebraker, 2013]). However, the
more entities are to be tagged, the more taggers need to be
trained. For example, [Gubanov and Stonebraker, 2014] uses
a semi-structured dataset that was a result of applying more
than 100 different entity-taggers. It is a rich dataset, but 100
taggers are expensive, challenging, and sometimes infeasible
to train. Hence, to scale up in order to identify hundreds
of different entities or process information from different
domains, domain-independent information extraction might be
a viable option.

Domain-independent information extraction is concerned with
the problem of identifying entities, their properties, and re-
lationships in a more general way, compared to the domain-
dependent approach. Rather than training a tagger for every
entity in a domain, a domain-independent parser parses nat-
ural language sentences into an intermediate semi-structured
representation that can be further used to define a small
template for an entity tagger regardless of the domain. For
example, a dependency tree [Klein and Manning, 2007] or
shallow parse are examples of an intermediate representation
that eases the burden of training a tagger per entity, as it is
not tied to any domain. One of the challenges in domain-
independent information extraction is the inaccuracy of NLP
parsers needed to produce such intermediate representations
[Klein and Manning, 2007]. It leads to an incorrect parse,
which in turn can significantly reduce precision and recall of
an entity tagger. In addition to that an NLP parser usually
works only on grammatical text, which makes it inapplicable
to any text without a correct language grammar.

There is controversy regarding strengths and weaknesses of
both approaches and there is still no scalable, fully unsuper-
vised solution available that can be applied to extract entities,
attributes, and relationships from a large-scale grammatical or
non-grammatical text from any domain.

Schema Integration, Data Cleaning/Fusion

Since data are large-scale and the number of sources is large
(e.g. millions of tables from the Web), this module should
be fully automatic, which means avoiding human intervention.
This requirement makes many well-known existing schema in-
tegration solutions unsuitable, because most of them are semi-
automatic and require human assistance during the integration
process. Unified Famous Objects [Gubanov et al., 2009] made
some progress to scale up schema integration, while minimiz-
ing or in some cases completely bypassing human intervention,
although mostly for structured data. The challenge still remains
open to support more data types.

Similarly, Data transformation, Cleaning, and Fusion at scale
need to support a variety of data types, yet remain unsuper-
vised. [Abedjan et al., 2014] is a recent work in this direction
that leverages the Web to automate the data transformation
process for structured data. The challenge still remains to
support more data sources as well as types of data.

Query Processing

Data in POLYFUSE can be accessed through the Query Proces-
sor. The author envisions a query processor capable of process-
ing keyword-queries, SQL, XQuery, and JSON depending on
the data used by the system and the query language preferred
by the user. Also a query language supporting hybrid queries in
two or more languages is needed, if the data is heterogeneous
and there is no wrapper available from one dataset to another
dataset.

For example, assume the user is mostly working with two
types of data - relational and semi-structured, and expects the
query result to be a relational table. She would then ingest her
files with a hope to fuse them and be able to query both of
them at once. She could manually specify a SQL: prefix in the
query portion accessing relational data and JSON: prefix in
the part querying semi-structured JSON data. Below, a hybrid
query, fusing information from Web text (semi-structured) and
Web tables (relational) [Cafarella et al., 2008] data sources
is illustrated. The query outputs the best deal for a popular
Broadway show.



SELECT MIN(S.Price)
S.ShowTime
FROM Shows AS S
WHERE S.Show IN
(SELECT WebText.TITLE
FROM
CAST (WebText,
JSON:
db.find ({
"WebText.location":"Broadway",
"WebText .type":"Show",
"WebText .html":/amazing/})

AS Price, S.Show, S.Theater,

1))
GROUP BY S.Show, S.Theater,
ORDER BY Price ASC

S.ShowTime

First, it would find all shows on Broadway mentioned on
Social Web (stored in a JSON database WebText), having
keyword amazing in the user comments'. Next, it would access
data from a relational table Shows, crawled from the Web,
having prices, theater addresses, and show times to find the
best deal.

In homogeneous (one-language) queries, the language can be
detected automatically by the Query Processor using a
machine learning classifier [Gubanov and Pyayt, 2016] trained
to detect the query language.

Query Optimization

Traditional query optimization is not directly applicable to
POLYFUSE. First, in order to gauge total execution cost, the
optimizer would have to have precise implementation models
of all operators from all storage engines. For example, a JSON
join is usually a distributed nested-loop join, in an array store it
might be a version of scatter and gather and it is not the same
in different array stores. Hence, adding a new engine to such
a system would require updating the optimizer with models of
all new operators, which would prohibitively complicate each
addition. Second, traditional cost-based optimizers heavily
depend on statistics (histograms for the value distribution of
entity attributes). Such statistics might not be exposed by all
stores, or it may not even be supported. Hence, a more flexible
and general query optimization strategy is needed for a large-
scale hybrid data integration and query processing system like
POLYFUSE.
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