
Hybrid: A Large-scale Linear-Relational Database
Management System

Michael Gubanov
University of Texas at San Antonio
mikhail.gubanov@utsa.edu

Christopher Jermaine,
Zekai Gao, Shangyu Luo

Rice University
cmj4@rice.edu

1. INTRODUCTION
Aspects of Relational Database Management Systems (RDBMSs)

make them attractive platforms for implementing and executing
large-scale statistical data processing and machine learning tasks.
Much of the world’s data is stored in RDBMSs, and it is desirable to
run statistical algorithms using the same system where the data are
stored, without extracting them and re-loading elsewhere. Further,
relational databases are fundamentally based upon the declarative
programming paradigm: the programmer specifies what he or she
wants, and not how to compute it. This should be especially com-
pelling for mathematicians and statisticians, who are rarely experts
in implementation strategies for distributed computations. In con-
trast to a code written directly on top of a system such as Hadoop
or Shark [4], a declarative system automatically chooses the best
execution strategy at runtime. This has the advantage of allowing
for data processing codes that are independent of data size, layout,
and indexing, as well as hardware platform, available RAM, paral-
lelization, and workload.

However, a fundamental barrier to utilizing relational databases
for statistical computations exists: the lack of native support for
linear algebra in the relational model. Many, if not most statisti-
cal computations utilize abstractions from linear algebra, such as
vectors, matrices, and standard operations over them (matrix multi-
plications, inverses, vector dot products, etc). Such data structures
and operations can be simulated/implemented using SQL, but the
problem is that the resulting codes are unnatural, bearing little re-
semblance to the original mathematics. Further, even if one can
successfully translate math into SQL for a desired task, the result-
ing computations will typically have poor performance.

Consider a data set consisting of the vectors {x1, x2, ..., xn}, and
imagine that our goal is to compute the distance

d2A(xi, x′) = (xi − x′)T A(xi − x′)

for a Riemannian metric encoded by the matrix A. This is a typical
operation in large-scale linear algebra and would be required, for
example, in a kNN-based classification or clustering in the metric
space defined by A.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

This can be implemented in SQL as follows. Assume the set of
vectors is encoded as a table:
data (pointID, dimID, value)

with the matrix A encoded as a second table:
matrixA (row, col, value)

Then, the desired computation is expressed in SQL as:

CREATE VIEW xDiff (pointID, value) AS
SELECT x2.pointID, x1.value - x2.value
FROM data AS x1, data AS x2
WHERE x1.pointID = i and x1.dim = x2.dim

SELECT x.pointID, SUM (firstPart.value * x.value)
FROM (SELECT x.pointID, a.colID,

SUM (a.value, x.value) AS value
FROM xDiff as X, matrixA AS a
WHERE x.dimID = a.rowID
GROUP BY x.pointID, a.colID)
AS firstPart, xDiff AS x

WHERE firstPart.colID = x.dimID
AND firstPart.pointID = x.pointID

GROUP BY x.pointID

This a very intricate piece of code, requiring a nested subquery and
a view—without the view it is even more intricate—and it bears
little resemblance to the original mathematics. Further, it is likely
to be inefficient to execute, requiring three or four joins and two
groupings. Also of concern is the fact that if the data are dense and
the number of data dimensions is large (that is, there are a lot of
dimID values for each pointID), then query execution will move
a huge number of small tuples through the system, since a million,
thousand-dimensional vectors are encoded as a billion tuples. In
the classical, iterator-based execution model, there is a fixed cost
incurred per tuple, which will translate to a very high execution
cost. Vector-based processing can alleviate this somewhat, but the
fact remains that optimal performance is unlikely.

Array Databases and the Relational Model. We are not the first
to observe the deficiencies of the relational model for processing
array-like data. This has lead to a long thread of research concerned
with developing alternative, array-based data models. The most
recent and high-profile example of such a project is SciDB [3, 1].

Unfortunately, none of the array database projects support tight
integration of both relational and array models. The users have to
either use both relational- and array-based engines or simulate one
of the data models on top of another one, like in the example above.

2. THE HYBRID ENGINE
Adding Vectors and Matrices To the Relational Model. Hence,
we suggest a much more modest approach here. Rather than seek-
ing to supplant the relational model with a new model that is suit-

1

able for processing any array-like data, we consider a narrow ques-
tion: Can we make a very small set of changes to the relational
model to render them suitable for in-database linear algebra?

Specifically, we consider adding new LABELED_SCALAR, VECTOR,
and MATRIX column data types to the relational model. At first
glance, this seems to be a rather minor change. After all, arrays are
available as column data types in most modern DBMSs—arrays
can clearly be used to encode vectors and matrices—and some
database systems (such as Oracle) offer a form of integration be-
tween arrays and linear algebra libraries such as BLAS. However,
level of integration into the database engine in these approaches
is rather shallow. The usage of matrices and vectors in the SQL
SELECT statement is very limited. The engine and its query opti-
mizer, do not “understand" the semantics of the linear algebra op-
erators, hence cannot choose to re-order operations in such a way
as to minimize the size of an intermediate matrix product.

Our hybrid engine embodies the following contributions:

• We propose a very small set of changes to SQL that allow
the use of vectors and matrices. In our Riemannian metric
example, the two input tables data and matrixA become
data (pointID, val) and matrixA (val) respec-
tively, where data.val is a vector, and matrixA.val is
a matrix. Then the SQL code to compute the pairwise dis-
tances becomes much simpler:

SELECT x2.pointID,
inner_product (

matrix_vector_multiply (
x1.val - x2.val, a.val),
x1.val - x2.val) AS value

FROM data AS x1, data AS x2, matrixA AS a
WHERE x1.pointID = i

• We define representation-based query optimization and eval-
uate a set of optimizations, where the engine “understands”,
hence can tell apart tables, matrices, and vectors. This results
in a “smarter” optimizer that is able to produce several orders
of magnitude performance gains, thereby enabling linear al-
gebra operations at ultra large-scale

• We have implemented most of these changes on top of Sim-
SQL [2] data management system to evaluate benefits of our
representation-based optimization.

3. HYBRID OPTIMIZATION
Figure 1 illustrates a fragment of a query plan having two table

scans, a JOIN, and a MATRIX_MULTIPLY. It is very common
and can be frequently seen in query plans for SELECT statements
implementing squared error, regression, and clustering algorithms.

Here, we can see the optimizer notices the MATRIX_MULTIPLY
node, substitutes it with INNER_PRODUCT and inserts two con-
version nodes before and after it (called Rep-Convert in Figure 1).
These nodes have simple purpose - the first one - making sure
the incoming data is converted from a format that the removed
MATRIX_MULTIPLY node was expecting (matrices) into a format
that a new INNER_PRODUCT now expects (vectors); the second
one - performing the back-conversion ({VECTOR → MATRIX}),
so that the rest of the query plan after it does not notice anything
compared to what was before the optimization. We call it data-
representation-based optimization, because data representation is
changed during optimization. We perform ultra-large-scale experi-
ments to evaluate its performance gains on ultra-large datasets.

We vary the matrix dimensionality from 1Kx1K to 2Kx2K (X
axis in Figure 2), the number of matrices from 100 to 2000, and

Figure 1: Hybrid Query Optimization - Query Plan Transfor-
mation

the number of vectors from 100K to 2 Million respectively (labeled
by color in Figure 2), thus conduct more than 10 experiments to
evaluate performance of both query plans. We plot the Hadoop job
execution time in seconds on Y axis in Figure 2.

In Figure 2 we can see that the first query plan (vectors) signif-
icantly outperforms the second one in all our ents, and the delta
increases with dimensionality. This means that matrix multipli-
cation gets too expensive for high-dimensional matrices and it is
faster to perform thousands of lightweight INNER_PRODUCT op-
erations than a heavyweight MATRIX_MULTIPLY on a big matrix.

Figure 2: Query Optimization Evaluation

4. REFERENCES
[1] P. G. Brown. Overview of scidb: Large scale array storage,

processing and analysis. In SIGMOD, 2010.
[2] R. Jampani, F. Xu, M. Wu, L. Perez, C. Jermaine, and P. J.

Haas. The monte carlo database system: Stochastic analysis
close to the data. ACM Trans. Database Syst., 36(3), Aug.
2011.

[3] M. Stonebraker, B. Jacel, D. Dewitt, K.-T. Lim, D. Maier,
O. Ratzesberger, and S. Zdonik. Requirements for science
data bases and scidb. In CIDR, 2009.

[4] R. S. Xin, J. Rosen, M. Zaharia, M. J. Franklin, S. Shenker,
and I. Stoica. Shark: Sql and rich analytics at scale. In
SIGMOD, 2013.

2

